【題目】已知函數 為奇函數.
(1)若函數f(x)在區間 上為單調函數,求m的取值范圍;
(2)若函數f(x)在區間[1,k]上的最小值為3k,求k的值.
【答案】
(1)解:∵函數 為奇函數,
∴f(﹣1)=﹣f(1),則﹣(1﹣a+4)=﹣(1+a+4),解得a=0,
即 =
,
∴f(x)在(0,2)上是減函數,在(2,+∞)上是增函數,
∵函數f(x)在區間 上為單調函數,
∴m≤2或 ,則0<m≤2或m≥4,
∴m的取值范圍是(0,2]∪[4,+∞)
(2)解:由(1)知,
f(x)在(0,2)上是減函數,在(2,+∞)上是增函數,
∵f(x)在區間[1,k]上的最小值為3k,
∴ 或
,
解得k= 或k=
(舍去),
即k的值是
【解析】(1)本題考查的是函數奇偶性奇函 數的定義以及函數單調性的定義;(2)考查的是函數最值問題。
【考點精析】通過靈活運用函數奇偶性的性質,掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx,g(x)=x2 . (Ⅰ)求函數h(x)=f(x)﹣x+1的最大值;
(Ⅱ)對于任意x1 , x2∈(0,+∞),且x1<x2 , 是否存在實數m,使mg(x1)﹣mg(x2)﹣x2f(x2)+x1f(x1)恒為正數?若存在,求出m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】極坐標系與直角坐標系xoy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知直線l的參數方程為 (t為參數),曲線C的極坐標方程為ρsin2θ=8cosθ. (I)求C的直角坐標方程;
(Ⅱ)設直線l與曲線C交于A,B兩點,求弦長|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的函數f(x)= 是奇函數.
(1)求實數a的值;
(2)判斷并證明f(x)在(﹣∞,+∞)上的單調性;
(3)若f(k3x)+f(3x﹣9x+1)>0對任意x≥0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】奇函數f(x)在(0,+∞)內單調遞增且f(2)=0,則不等式 的解集為( )
A.(﹣∞,﹣2)∪(0,1)∪(1,2)
B.(﹣2,0)∪(1,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣2)∪(0,1)∪(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ﹣
的定義域為集合A,B={x∈Z|0<x<10},C={x∈R|2a+3<x<a+5}.
(1)求A,(RA)∩B;
(2)若A∩C=C,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=ax3﹣bx+4,當x=2時,函數f(x)有極值為 , (Ⅰ)求函數f(x)的解析式;
(Ⅱ)若f(x)=k有3個解,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com