精英家教網 > 高中數學 > 題目詳情

【題目】某城市理論預測2010年到2014年人口總數與年份的關系如下表所示

年份2010+x(年)

0

1

2

3

4

人口數y(十萬)

5

7

8

11

19

(1)請根據上表提供的數據,求出y關于x的線性回歸方程;

(2) 據此估計2015年該城市人口總數。

【答案】1;(2196.

【解析】試題分析:(1)先求出五對數據的平均數,求出年份和人口數的平均數,得到樣本中心點,把所給的數據代入公式,利用最小二乘法求出線性回歸方程的系數,再求出a的值,從而得到線性回歸方程;

2)把x=5代入線性回歸方程,得到,即2015年該城市人口數大約為19.6(十萬).

試題解析:

解:1,

= 0×5+1×7+2×8+3×11+4×19=132,

=

y關于x的線性回歸方程為

2)當x=5時,,即

據此估計2015年該城市人口總數約為196.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A=[0, ),B=[ ,1],函數f (x)= ,若x0∈A,且f[f (x0)]∈A,則x0的取值范圍是(
A.(0, ]
B.[ ]
C.( ,
D.[0, ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知F1 , F2分別是橢圓C: (a>b>0)的兩個焦點,P(1, )是橢圓上一點,且 |PF1|,|F1F2|, |PF2|成等差數列.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F2 , 且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 =﹣ 恒成立?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點D是⊙O上一點,過點D作⊙O的切線,交AB的延長線于點C,過點C作AC的垂線,交AD的延長線于點E.

(1)求證:△CDE為等腰三角形;
(2)若AD=2, = ,求⊙O的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數上的偶函數.

(1)求實數的值;

(2)判斷并證明函數上單調性;

(3)求函數上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數方程為 (t為參數),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2 sinθ.
(1)求圓C的直角做標方程;
(2)圓C的圓心為C,點P為直線l上的動點,求|PC|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且AD= DB,點C為圓O上一點,且BC= AC.點P在圓O所在平面上的正投影為點D,PD=DB.

(1)求證:PA⊥CD;
(2)求二面角C﹣PB﹣A的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视