精英家教網 > 高中數學 > 題目詳情

【題目】已知數列的各項均為正數,前項和為,滿足.

(1)求數列的通項公式;

(2)設,求數列的前項和.

【答案】(1) (2)

【解析】

(1)利用,結合等差數列的通項公式可求;

(2)由(1)可求,bn=2n﹣1+2n,利用分組求和方法,結合等差與等比數列的求和公式可求.

解:(1)∵an2+2an=4Sn﹣1,

∴1+an2+2an=4Sn,1+an﹣12+2an﹣1=4Sn﹣1,

兩式相減可得,

,

an>0,

anan﹣1=2,

a12+2a1=4S1﹣1,解可得a1=1,

∴數列{an}是以1為首項,以2為公差的等差數列,

an=1+2(n﹣1)=2n﹣1;

(2)由(1)可知,bn=2n﹣1+2n,

Tn=(1+3+…+2n﹣1)+(2+22+…+2n),

,

n2+2n+1﹣2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某企業通過調查問卷(滿分50分)的形式對本企業900名員工的工作滿意程度進行調查,并隨機抽取了其中30名員工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根據以上數據,估計該企業得分大于45分的員工人數;

(2)現用計算器求得這30名員工的平均得分為40.5分,若規定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:

“滿意”的人數

“不滿意”的人數

合計

女員工

16

男員工

14

合計

30

(3)根據上述表中數據,利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為該企業員工“性別”與“工作是否滿意”有關?

參考數據:

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數方程為φ為參數),以坐標原點O為極點,x軸的正半軸為極軸,建立極坐標系.

1)求C1的極坐標方程;

2)若C1與曲線C2ρ2sinθ交于A,B兩點,求|OA||OB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】火箭少女101的新曲《卡路里》受到了廣大聽眾的追捧,歌詞積極向上的體現了人們對于健康以及完美身材的渴望.據有關數據顯示,成年男子的體脂率在14%-25%之間.幾年前小王重度肥胖,在專業健身訓練后,身材不僅恢復正常,且走上美體路線.通過整理得到如下數據及散點圖.

健身年數

1

2

3

4

5

6

體脂率(有分比)

32

20

12

8

6.4

4.4

3.4

3

2.5

2.1

1.9

1.5

1)根據散點圖判斷,哪一個模型更適宜作為體脂率關于健身年數的回歸方程模型(給出選擇即可)

2)根據(1)的判斷結果與題目中所給數據,建立的回歸方程.(保留一位小數)

3)再堅持3年,體脂率可達到多少.

參考公式:

參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三梭柱ABCA1B1C1中,ACBC,E,F分別為AB,A1B1的中點.

1)求證:AF∥平面B1CE

2)若A1B1,求證:平面B1CE⊥平面ABC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知.

(1)求不等式的解集;

(2)若關于的不等式能成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在10件產品中,有3件一等品,4件二等品,3件三等品。從這10件產品中任取3件,求:

I) 取出的3件產品中一等品件數X的分布列和數學期望;

II) 取出的3件產品中一等品件數多于二等品件數的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數記為,其函數圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調整方案,圖(2)、圖(3)中的實線分別為調整后的函數圖象.

給出下列四種說法:

①圖(2)對應的方案是:提高票價,并提高成本;

②圖(2)對應的方案是:保持票價不變,并降低成本;

③圖(3)對應的方案是:提高票價,并保持成本不變;

④圖(3)對應的方案是:提高票價,并降低成本.

其中,正確的說法是____________.(填寫所有正確說法的編號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了人口規模相當的個城市采用不同的定價方案作為試點,經過一個月的統計,發現該流量包的定價: (單位:元/月)和購買總人數(單位:萬人)的關系如表:

定價x(元/月)

20

30

50

60

年輕人(40歲以下)

10

15

7

8

中老年人(40歲以及40歲以上)

20

15

3

2

購買總人數y(萬人)

30

30

10

10

(Ⅰ)根據表中的數據,請用線性回歸模型擬合的關系,求出關于的回歸方程;并估計元/月的流量包將有多少人購買?

(Ⅱ)若把元/月以下(不包括元)的流量包稱為低價流量包,元以上(包括元)的流量包稱為高價流量包,試運用獨立性檢驗知識,填寫下面列聯,并通過計算說明是否能在犯錯誤的概率不超過的前提下,認為購買人的年齡大小與流量包價格高低有關?

定價x(元/月)

小于50元

大于或等于50元

總計

年輕人(40歲以下)

中老年人(40歲以及40歲以上)

總計

參考公式:其中

其中

參考數據:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视