精英家教網 > 高中數學 > 題目詳情

已知是定義在上的奇函數,且,若時,有成立.

(1)判斷上的單調性,并證明;

(2)解不等式:;

(3)若當時,對所有的恒成立,求實數的取值范圍.

 

【答案】

解:(1)上單調遞增.

 (2)不等式的解集為

 (3)的取值范圍是.

【解析】本題主要考查單調性和奇偶性的綜合應用及函數最值、恒成立問題的轉化化歸思想.

(1)由單調性定義判斷和證明;

(2)由f(x)是奇函數和(1)的結論知f(x)在上[-1,1]是增函數,再利用定義的逆用求解;

(3)先由(1)求得f(x)的最大值,再轉化為關于a的不等式恒成立問題求解.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數. 當a,b∈[-1,1],且a+b≠0時,有
f(a)+f(b)a+b
>0
成立.
(Ⅰ)判斷函f(x)的單調性,并證明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1對所有x∈[-1,1],b∈[-1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在R上的不恒為零的函數,且對于任意實數a,b都有f(a•b)=af(b)+bf(a),則( 。

查看答案和解析>>

科目:高中數學 來源:2014屆云南省高一上學期期中數學試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數是定義在上的奇函數,且,

(1)確定函數的解析式;

(2)用定義證明上是增函數;

(3)解不等式.

【解析】第一問利用函數的奇函數性質可知f(0)=0

結合條件,解得函數解析式

第二問中,利用函數單調性的定義,作差變形,定號,證明。

第三問中,結合第二問中的單調性,可知要是原式有意義的利用變量大,則函數值大的關系得到結論。

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年浙江省高三三月月考數學(理)試卷 題型:選擇題

已知函數是定義在R上的奇函數,且,在[0,2]上是增函

數,則下列結論:

(1)若,則;[來源:Z§xx§k.Com]

(2)若

(3)若方程在[-8,8]內恰有四個不同的根,則;

其中正確的有(     )

A.0個              B.1個             C.2個               D.3個

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知是定義在上的不恒為零的函數,且對于任意實數都有, 則

(A)是奇函數,但不是偶函數         (B)是偶函數,但不是奇函數

(C)既是奇函數,又是偶函數         (D)既非奇函數,又非偶函

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视