【題目】f(x)是定義在(0,+∞)上單調函數,且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實數解所在的區間是( )
A.(0, )
B.( ,1)
C.(1,e)
D.(e,3)
【答案】C
【解析】解:∵f(x)是定義在(0,+∞)上單調函數,且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,
∴設f(x)﹣lnx=t,則f(t)=e+1,
即f(x)=lnx+t,
令x=t,則f(t)=lnt+t=e+1,
則t=e,
即f(x)=lnx+e,
函數的導數f′(x)= ,
則由f(x)﹣f′(x)=e得lnx+e﹣ =e,
即lnx﹣ =0,
設h(x)=lnx﹣ ,
則h(1)=ln1﹣1=﹣1<0,h(e)=lne﹣ =1﹣
>0,
∴函數h(x)在(1,e)上存在一個零點,即方程f(x)﹣f′(x)=e的實數解所在的區間是(1,e),
故選:C.
利用換元法求出函數f(x)的解析式,然后根據函數與方程的關系進行轉化,構造函數,判斷函數的零點即可得到結論.
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5 ,b=5,求sinA.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】年年底,某城市地鐵交通建設項目已經基本完成,為了解市民對該項目的滿意度,分別從不同地鐵站點隨機抽取若干市民對該項目進行評分(滿分
分),繪制如下頻率分布直方圖,并將分數從低到高分為四個等級:
滿意度評分 | 低于 60分 | 60分 到79分 | 80分 到89分 | 不低 于90分 |
滿意度等級 | 不滿意 | 基本滿意 | 滿意 | 非常滿意 |
已知滿意度等級為基本滿意的有人.
(1)求頻率分布于直方圖中的值,及評分等級不滿意的人數;
(2)在等級為不滿意市民中,老年人占,中青年占
,現從該等級市民中按年齡分層抽取
人了解不滿意的原因,并從中選取
人擔任整改督導員,求至少有一位老年督導員的概率;
(3)相關部門對項目進行驗收,驗收的硬性指標是:市民對該項目的滿意指數不低于,否則該項目需進行整改,根據你所學的統計知識,判斷該項目能否通過驗收,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓
的方程為:
,直線
的方程為
.
(1)求證:直線恒過定點;
(2)當直線被圓
截得的弦長最短時,求直線
的方程;
(3)在(2)的前提下,若為直線
上的動點,且圓
上存在兩個不同的點到點
的距離為
,求點
的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的右焦點為
,點
分別是橢圓
的上、下頂點,點
是直線
上的一個動點(與
軸的交點除外),直線
交橢圓于另一個點
.
(1)當直線經過橢圓的右焦點
時,求
的面積;
(2)①記直線的斜率分別為
,求證:
為定值;
②求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求數列{an}的通項公式an;
(2)令 ,寫出Tn關于n的表達式,并求滿足Tn>
時n的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人在連續7天的定點投籃的分數統計如下:在上述統計數據的分析中,一部分計算如右圖所示的算法流程圖(其中 是這7個數據的平均數),則輸出的S的值是( )
觀測次數i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
觀測數據ai | 5 | 6 | 8 | 6 | 8 | 8 | 8 |
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取100名學生,將他們期中考試的數學成績(均為整數)分成六段:[40,50),[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示).則分數在[70,80)內的人數是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com