精英家教網 > 高中數學 > 題目詳情

【題目】已知函數g(x)=ax﹣f(x)(a>0且a≠1),其中f(x)是定義在[a﹣6,2a]上的奇函數,若 ,則g(1)=(
A.0
B.﹣3
C.1
D.﹣1

【答案】A
【解析】解:奇函數定義域關于原點對稱;

∴a﹣6=﹣2a

∴a=2;

,函數g(x)=2x﹣f(x),

+g(1)= ﹣f(﹣1)+2﹣f(1),

∵f(x)是定義在[a﹣6,2a]上的奇函數,

則f(﹣1)+f(1)=0,

∴g(1)=0,

故選A.

【考點精析】本題主要考查了函數奇偶性的性質的相關知識點,需要掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sinx(2 cosx﹣sinx)+1 (Ⅰ)求f(x)的最小正周期;
(Ⅱ)討論f(x)在區間[﹣ , ]上的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P﹣ABCD,底面ABCD是∠A=60°、邊長為a的菱形,又PD⊥底ABCD,且PD=CD,點M、N分別是棱AD、PC的中點.

(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)求點A到平面PMB的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】狄利克雷是德國著名數學家,函數D(x)= 被稱為狄利克雷函數,下面給出關于狄利克雷函數D(x)的五個結論: ①若x是無理數,則D(D(x))=0;
②函數D(x)的值域是[0,1];
③函數D(x)偶函數;
④若T≠0且T為有理數,則D(x+T)=D(x)對任意的x∈R恒成立;
⑤存在不同的三個點A(x1 , D(x1)),B(x2 , D(x2)),C(x3 , D(x3)),使得△ABC為等邊角形.
其中正確結論的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AD=AC,AB= DE,F是CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了解用戶對其產品的滿意度,從某地區隨機調查了100個用戶,得到用戶對產品的滿意度評分頻率分布表如下:

組別

分組

頻數

頻率

第一組

(50,60]

10

0.1

第二組

(60,70]

20

0.2

第三組

(70,80]

40

0.4

第四組

(80,90]

25

0.25

第五組

(90,100)

5

0.05

合計

100

1


(1)根據上面的頻率分布表,估計該地區用戶對產品的滿意度評分超過70分的概率;
(2)請由頻率分布表中數據計算眾數、中位數,平均數,根據樣本估計總體的思想,若平均分低于75分,視為不滿意.判斷該地區用戶對產品是否滿意?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓兩焦點 ,并且經過點
(1)求橢圓的方程;
(2)若過點A(0,2)的直線l與橢圓交于不同的兩點M、N(M在A、N之間),試求△OAM與△OAN面積之比的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱錐V﹣ABC中,VA=VB=AC=BC=2,AB= ,VC=1.
(Ⅰ)證明:AB⊥VC;
(Ⅱ)求三棱錐V﹣ABC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐O﹣ABCD中,∠BAD=120°,OA⊥平面ABCD,E為OD的中點,OA=AC= AD=2,AC平分∠BAD.

(1)求證:CE∥平面OAB;
(2)求四面體OACE的體積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视