精英家教網 > 高中數學 > 題目詳情

設函數,對于滿足的一切值都有,求實數的取值范圍。

 

 

 

【答案】

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設M是由滿足下列條件的函數f(x)構成的集合:“①方程f(x)-x=0有實數根;②函數f(x)的導數f(x)滿足
0<f(x)<1”
(I)證明:函數f(x)=
3x
4
+
x3
3
(0≤x<
1
2
)是集合M中的元素;
(II)證明:函數f(x)=
3x
4
+
x3
3
(0≤x
1
2
)具有下面的性質:對于任意[m,n]⊆[0,
1
2
),都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.
(III)若集合M中的元素f(x)具有下面的性質:若f(x)的定義域為D,則對于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.試用這一性質證明:對集合M中的任一元素f(x),方程f(x)-x=0只有一個實數根.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•房山區一模)已知函數f(x)的定義域是D,若對于任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數f(x)在D上為非減函數.設函數f(x)在[0,1]上為非減函數,且滿足以下三個條件:①f(0)=0;  ②f(
x
5
)=
1
2
f(x);  ③f(1-x)=1-f(x).則f(
4
5
)=
1
2
1
2
,f(
1
2013
)=
1
32
1
32

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•房山區一模)已知函數f(x)的定義域是D,若對于任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數f(x)在D上為非減函數.設函數f(x)在[0,1]上為非減函數,且滿足以下三個條件:
①f(0)=0;  
f(
x
5
)=
1
2
f(x)
;  
③f(1-x)=1-f(x).
f(
4
5
)
=
1
2
1
2
f(
1
12
)
=
1
4
1
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•順義區一模)已知數列{an}的前n項和為Sn,且點(n,Sn)在函數y=2x+1-2的圖象上.
(I)求數列{an}的通項公式;
(II)設數列{bn}滿足:b1=0,bn+1+bn=an,求數列{bn}的前n項和公式;
(III)在第(II)問的條件下,若對于任意的n∈N*不等式bn<λbn+1恒成立,求實數h(-1)=-
13
的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•延慶縣一模)設函數f(x)的定義域為D,如果對于任意的x1∈D,存在唯一一個x2∈D,使得f(x1)+f(x2)=c(c為常數)成立,則稱函數f(x)在D上“與常數c關聯”,現有函數 ①y=
1
x-1
,②y=-x3,③y=(
1
2
)|x|
,④y=ln(-x),⑤y=cosx+
1
2
,則其中滿足在其定義域上與常數1關聯的所有函數是(  )

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视