【題目】已知曲線C1的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sin θ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
【答案】(1) ;(2) (
),
.
【解析】試題分析:(1) 先根據同角三角函數關系cos2t+sin2t=1消參數得普通方程:(x-4)2+(y-5)2=25 ,再根據將普通方程化為極坐標方程:
(2)將
代入
得
得
,也可利用直角坐標方程求交點,再轉化為極坐標
試題解析: (1)∵C1的參數方程為
∴(x-4)2+(y-5)2=25(cos2t+sin2t)=25,
即C1的直角坐標方程為(x-4)2+(y-5)2=25,
把代入(x-4)2+(y-5)2=25,
化簡得: .[Z.X.X.K]
(2)C2的直角坐標方程為x2+y2=2y,C1的直角坐標方程為(x-4)2+(y-5)2=25,
∴C1與C2交點的直角坐標為(1,1),(0,2).
∴C1與C2交點的極坐標為.
科目:高中數學 來源: 題型:
【題目】已知向量=(cosθ,sinθ),
=(cosβ,sinβ).
(1)若,求
的值;
(2)若記f(θ)=
,θ∈[0,
].當1≤λ≤2時,求f(θ)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+a|(a>-2)的圖象過點(2,1).
(1)求實數a的值;
(2)設,在如圖所示的平面直角坐標系中作出函數y=g(x)的簡圖,并寫出(不需要證明)函數g(x)的定義域、奇偶性、單調區間、值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+2ax+3-b(a≠0,b>0)在[0,3]上有最小值2,最大值17,函數g(x)=.
(l)求函數g(x)的解析式;
(2)證明:對任意實數m,都有g(m2+2)≥g(2|m|+l);
(3)若方程g(|log2x-1|)+3k(-1)=0有四個不同的實數解,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)的周期為2,當x∈[0,2時,f(x)=2|x-1|-1,如果g(x)=f(x)-log3|x-2|,則函數y=g(x)的所有零點之和為( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sin θ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面
為菱形,
,側面
是邊長為
的正三角形,側面
底面
.
()設
的中點為
,求證:
平面
.
()求斜線
與平面
所成角的正弦值.
()在側棱
上存在一點
,使得二面角
的大小為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數據分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據直方圖,這200名學生中每周的自習時間不少于22.5小時的人數是( 。
A.56
B.60
C.120
D.140
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com