精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=alnx﹣ x2+bx存在極小值,且對于b的所有可能取值,f(x)的極小值恒大于0,則a的最小值為

【答案】﹣e3
【解析】解:函數的定義域為(0,+∞),

則函數的導數f′(x)= ﹣x+b,

若函數f(x)=alnx﹣ x2+bx存在極小值,

則f′(x)= ﹣x+b=0有解,

即﹣x2+bx+a=0有兩個不等的正根,

,得b>2 ,(a<0),

由f′(x)=0得x1= ,x2=

分析易得f(x)的極小值點為x1,

∵b>2 ,(a<0),

∴x1= = ∈(0, ),

則f(x)極小值=f(x1)=alnx1 x12+bx1=alnx1 x12+x12﹣a=alnx1+ x12﹣a,

設g(x)=alnx+ x2﹣a,x∈(0, ),

f(x)的極小值恒大于0等價為g(x)恒大于0,

∵g′(x)= +x= <0,

∴g(x)在(0, )上單調遞減,

故g(x)>g( )=aln a≥0,

得ln ,即﹣a≤e3,則a≥﹣e3

故a的最小值為是﹣e3,

所以答案是:﹣e3

【考點精析】本題主要考查了函數的極值與導數的相關知識點,需要掌握求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】有一個正方體的玩具,六個面標注了數字1,2,3,4,5,6,甲、乙兩位學生進行如下游戲:甲先拋擲一次,記下正方體朝上的數字 ,再由乙拋擲一次,記下正方體朝上數字 ,若 就稱甲、乙兩人“默契配合”,則甲、乙兩人“默契配合”的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在棱長都相等的四面體PABC中,D、E、F分別是AB、BC、CA的中點,則下面四個結論中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將下列集合用區間表示出來:
(1);
(2);
(3).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,其左、右焦點為F1、F2 , 點P是坐標平面內一點,且|OP|= , = ,其中O為坐標原點.

(1)求橢圓C的方程;
(2)如圖,過點S(0,﹣ )的動直線l交橢圓于A、B兩點,是否存在定點M,使以AB為直徑的圓恒過這個點?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正方體ABCD-A1B1C1D1中,BB1與平面ACD1所成的角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為評估新教改對教學的影響,挑選了水平相當的兩個平行班進行對比實驗.甲班采用創新教法,乙班仍采用傳統教法,一段時間后進行水平測試,成績結果全部落在[60,100]區間內(滿分100分),并繪制頻率分布直方圖如圖,兩個班人數均為60人,成績80分及以上為優良.
(1)根據以上信息填好2×2聯表,并判斷出有多大的把握認為學生
(2)成績優良與班級有關?
(3)以班級分層抽樣,抽取成績優良的5人參加座談,現從5人中隨機選3人來作書面發言,求發言人至少有2人來自甲班的概率.(以下臨界值及公式僅供參考)

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

k2= ,n=a+b+c+d.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列結論不正確的是(填序號).
①各個面都是三角形的幾何體是三棱錐;
②以三角形的一條邊所在直線為旋轉軸,其余兩邊旋轉形成的曲面所圍成的幾何體叫圓錐;
③棱錐的側棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐;
④圓錐的頂點與底面圓周上的任意一點的連線都是母線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項的和為Sn , 且Sn+ an=1(n∈N*
(1)求{an}的通項公式;
(2)設bn=﹣log3(1﹣Sn),設Cn= ,求數列{Cn}的前n項的和Tn

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视