精英家教網 > 高中數學 > 題目詳情

【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標準如下:4小時內(4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(24小時)收費30元;超過24小時,按前述標準重新計費.上述標準不足一小時的按一小時計費.為了調查該停車場一天的收費情況,現統計1000輛車的停留時間(假設每輛車一天內在該停車場僅停車一次),得到下面的頻數分布表:

以車輛在停車場停留時間位于各區間的頻率代替車輛在停車場停留時間位于各區間的概率.

(1)現在用分層抽樣的方法從上面1000輛車中抽取了100輛車進行進一步深入調研,記錄并統計了停車時長與司機性別的列聯表:

完成上述列聯表,并判斷能否有的把握認為停車是否超過6小時與性別有關?

(2)(i)X表示某輛車一天之內(含一天)在該停車場停車一次所交費用,求X的概率分布列及期望:

(ii)現隨機抽取該停車場內停放的3輛車,表示3輛車中停車費用大于的車輛數,求P()的概率.

參考公式:,其中

【答案】(1)沒有超過的把握認為停車是否超過6小時與性別有關;(2)(i)分布列見解析,,(ii)

【解析】

(1)用分層抽樣的方法計算不超過6小時得車輛有40輛,結合列聯表數據完善表格,并代入公式,計算出的值,與獨立性檢驗判斷表比較作出判斷.

(2)(i)分析停車一次所交費用變量的可能值為5,811,15,19,30,并根據“以車輛在停車場停留時間位于各區間的頻率代替車輛在停車場停留時間位于各區間的概率”求 出 對 應 概 率;列 出 分 布 列,求 期 望..

(2) (ii)服從二項分布,用二項分布的概率公式計算.

(1)列聯表如下:

合計

不超過6小時

10

30

40

6小時以上

20

40

60

合計

30

70

100

根據上表數據代入公式可得

所以沒有超過的把握認為停車是否超過6小時與性別有關;

(2)(i)由題意知,X的可能值為58,1115,19,30,則

,,,

,

所以X的分布列為

X

5

8

11

15

19

30

(ii)由題意得

所以

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,正三棱柱的底面邊長為2, 是側棱的中點.

1證明:平面平面

2若平面與平面所成銳角的大小為,求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為實現2020年全面建設小康社會,某地進行產業的升級改造.經市場調研和科學研判,準備大規模生產某高科技產品的一個核心部件,目前只有甲、乙兩種設備可以獨立生產該部件.如圖是從甲設備生產的部件中隨機抽取400件,對其核心部件的尺寸x,進行統計整理的頻率分布直方圖.

根據行業質量標準規定,該核心部件尺寸x滿足:|x12|≤1為一級品,1<|x12|≤2為二級品,|x12|>2為三級品.

(Ⅰ)現根據頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產品,再從所抽取的40件產品中,抽取2件尺寸x∈[12,15]的產品,記ξ為這2件產品中尺寸x∈[14,15]的產品個數,求ξ的分布列和數學期望;

(Ⅱ)將甲設備生產的產品成箱包裝出售時,需要進行檢驗.已知每箱有100件產品,每件產品的檢驗費用為50.檢驗規定:若檢驗出三級品需更換為一級或二級品;若不檢驗,讓三級品進入買家,廠家需向買家每件支付200元補償.現從一箱產品中隨機抽檢了10件,結果發現有1件三級品.若將甲設備的樣本頻率作為總體的慨率,以廠家支付費用作為決策依據,問是否對該箱中剩余產品進行一一檢驗?請說明理由;

(Ⅲ)為加大升級力度,廠家需增購設備.已知這種產品的利潤如下:一級品的利潤為500元/件;二級品的利潤為400元/件;三級品的利潤為200元/件.乙種設備產品中一、二、三級品的概率分別是,.若將甲設備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據.應選購哪種設備?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓規是用來畫橢圓的一種器械,它的構造如圖所示,在一個十字形的金屬板上有兩條互相垂直的導槽,在直尺上有兩個固定的滑塊AB,它們可分別在縱槽和橫槽中滑動,在直尺上的點M處用套管裝上鉛筆,使直尺轉動一周,則點M的軌跡C是一個橢圓,其中|MA|2,|MB|1,如圖,以兩條導槽的交點為原點O,橫槽所在直線為x軸,建立直角坐標系.

1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ0≤φ),用表示點M的坐標,并求出C的普通方程;

2)已知過C的左焦點F,且傾斜角為α0≤α)的直線l1C交于D,E兩點,過點F且垂直于l1的直線l2C交于G,H兩點.,|GH|,依次成等差數列時,求直線l2的普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某土特產超市為預估2020年元旦期間游客購買土特產的情況,對2019年元旦期間的90位游客購買情況進行統計,得到如下人數分布表.

(1)根據以上數據完成列聯表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.

(2)為吸引游客,該超市推出一種優惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為p(每次抽獎互不影響,且p的值等于人數分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產,請列出實際付款數X()的分布列并求其數學期望.

:參考公式和數據:,.

附表:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了冰雪答題王冬奧知識競賽活動.現從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)記表示事件從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于,估計的概率;

3)在抽取的名學生中,規定:比賽成績不低于分為優秀,比賽成績低于分為非優秀.請將下面的列聯表補充完整,并判斷是否有的把握認為比賽成績是否優秀與性別有關?

優秀

非優秀

合計

男生

女生

合計

參考公式及數據:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.

(1)完成列聯表,并回答能否有的把握認為“對冰球是否有興趣與性別有關”?

有興趣

沒興趣

合計

55

合計

(2)已知在被調查的女生中有5名數學系的學生,其中3名對冰球有興趣,現在從這5名學生中隨機抽取3人,求至少有2人對冰球有興趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,P為直線上的動點,動點Q滿足,且原點O在以為直徑的圓上.記動點Q的軌跡為曲線C

1)求曲線C的方程:

2)過點的直線與曲線C交于AB兩點,點D(異于AB)在C上,直線分別與x軸交于點M,N,且,求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求函數的最大值;

2)若函數存在兩個零點,證明:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视