【題目】半圓的直徑的兩端點為
,點
在半圓
及直徑
上運動,若將點
的縱坐標伸長到原來的2倍(橫坐標不變)得到點
,記點
的軌跡為曲線
.
(1)求曲線的方程;
(2)若稱封閉曲線上任意兩點距離的最大值為該曲線的“直徑”,求曲線的“直徑”.
科目:高中數學 來源: 題型:
【題目】已知直線、
與平面
、
滿足
,
,
,則下列命題中正確的是( )
A.是
的充分不必要條件
B.是
的充要條件
C.設,則
是
的必要不充分條件
D.設,則
是
的既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司舉辦捐步公益活動,參與者通過捐贈每天的運動步數獲得公司提供的牛奶,再將牛奶捐贈給留守兒童.此活動不但為公益事業作出了較大的貢獻,公司還獲得了相應的廣告效益.據測算,首日參與活動人數為人,以后每天人數比前一天都增加
,
天后捐步人數穩定在第
天的水平,假設此項活動的啟動資金為
萬元,每位捐步者每天可以使公司收益
元(以下人數精確到
人,收益精確到
元).
(1)求活動開始后第天的捐步人數,及前
天公司的捐步總收益;
(2)活動開始第幾天以后公司的捐步總收益可以收回啟動資金并有盈余?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數
的圖像與函數
的圖像關于直線
對稱.
(1)求函數的解析式;
(2)若函數在區間
上的值域為
,求實數
的取值范圍;
(3)設函數,試用列舉法表示集合
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某地區的“微信健步走”活動情況,現用分層抽樣的方法從中抽取老、中、青三個年齡段人員進行問卷調查.已知抽取的樣本同時滿足以下三個條件:
(i)老年人的人數多于中年人的人數;
(ii)中年人的人數多于青年人的人數;
(iii)青年人的人數的兩倍多于老年人的人數.
①若青年人的人數為4,則中年人的人數的最大值為___________.
②抽取的總人數的最小值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以原點為圓心,橢圓
的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設為橢圓右頂點,過橢圓
的右焦點的直線
與橢圓
交于
,
兩點(異于
),直線
,
分別交直線
于
,
兩點. 求證:
,
兩點的縱坐標之積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知正方體的棱長為2,E、F、G分別為
的中點,給出下列命題:
①異面直線EF與AG所成的角的余弦值為;
②過點E、F、G作正方體的截面,所得的截面的面積是;
③平面
④三棱錐的體積為1
其中正確的命題是_____________(填寫所有正確的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com