【題目】已知集合A={x|﹣2≤x≤5},B={x|m﹣4≤x≤3m+3}.
(1)若AB,求實數m的取值范圍;
(2)若A∩B=B,求實數m的取值范圍.
【答案】
(1)解:∵集合A={x|﹣2≤x≤5},B={x|m﹣4≤x≤3m+3}.
AB,
∴ ,
解得1≤m≤2.
∴實數m的取值范圍是[1,2]
(2)解:∵A∩B=B,∴BA,
①當B=時,賊》3m+2,∴m<﹣3符合題意;
②當B≠時, ,無解.
綜上可得,m<﹣3.
∴實數m的取值范圍是(﹣∞,﹣3)
【解析】(1)由AB,列出不等式組,即可求解實數m的取值范圍.(2)由A∩B=B,根據B=和B≠分類討論,分別求解實數m的取值范圍,取并集即可求解m的取值范圍.
【考點精析】利用集合的交集運算對題目進行判斷即可得到答案,需要熟知交集的性質:(1)A∩BA,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程是
(
為參數),以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,且直線
與曲線
交于
,
兩點.
(Ⅰ)求曲線的直角坐標方程及直線
恒過的定點
的坐標;
(Ⅱ)在(Ⅰ)的條件下,若,求直線
的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】朱世杰是歷史上最未打的數學家之一,他所著的《四元玉鑒》卷中“如像招數一五間”,有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日?”.其大意為:“官府陸續派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數比前一天多7人,修筑堤壩的每人每天發大米3升,共發出大米40392升,問修筑堤壩多少天”.在這個問題中,前5天應發大米( )
A. 894升 B. 1170升 C. 1275升 D. 1457升
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩名同學在5次英語口語測試中的成績統計如圖的莖葉圖所示.
(注:樣本數據x1 , x2 , …,xn的方差s2= [
+
+…+
],其中
表示樣本均值)
(1)現要從中選派一人參加英語口語競賽,從兩同學的平均成績和方差分析,派誰參加更合適;
(2)若將頻率視為概率,對學生甲在今后的三次英語口語競賽成績進行預測,記這三次成績中高于80分的次數為ξ,求ξ的分布列及數學期望Eξ.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在[1,+∞)上的函數f(x)= 給出下列結論:
①函數f(x)的值域為(0,8];
②對任意的n∈N,都有f(2n)=23﹣n;
③存在k∈( ,
),使得直線y=kx與函數y=f(x)的圖象有5個公共點;
④“函數f(x)在區間(a,b)上單調遞減”的充要條件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正確命題的序號是( )
A.①②③
B.①③④
C.①②④
D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的上下兩個焦點分別為
,
,過點
與
軸垂直的直線交橢圓
于
、
兩點,
的面積為
,橢圓
的離心力為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知為坐標原點,直線
:
與
軸交于點
,與橢圓
交于
,
兩個不同的點,若存在實數
,使得
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com