【題目】某工廠的檢驗員為了檢測生產線上生產零件的情況,從產品中隨機抽取了個進行測量,根據所測量的數據畫出頻率分布直方圖如下:
如果:尺寸數據在內的零件為合格品,頻率作為概率.
(1)從產品中隨機抽取件,合格品的個數為
,求
的分布列與期望:
(2)為了提高產品合格率,現提出,
兩種不同的改進方案進行試驗,若按
方案進行試驗后,隨機抽取
件產品,不合格個數的期望是
:若按
方案試驗后,抽取
件產品,不合格個數的期望是
,你會選擇哪個改進方案?
【答案】(1)詳見解析(2)應選擇方案,詳見解析
【解析】
(1) 先由頻率分布直方圖,可以推出產品為合格品的概率,再求出隨機變量的分布列及期望;
(2) 方案隨機抽取產品與
方案隨機抽取產品都為相互獨立事件,服從二項分布,由不合格個數的期望分別求出不合格的概率即可得出較好的方案.
(1)由直方圖可知抽出產品為合格品的率為
即推出產品為合格品的概率為,
從產品中隨機抽取件.合格品的個數
的所有可能取值為0,1,2,3,4,
且,
,
,
,
.
所以的分布判為
的數學期望
.
(2)方案隨機抽取產品不合格的概率是
,隨機抽取
件產品,不合格個數
:
按方案隨機抽取產品不合格的概率是
,隨機抽取
件產品,不合格個數
依題意,
,
解得,
因為,
所以應選擇方案.
科目:高中數學 來源: 題型:
【題目】到2020年,我國將全面建立起新的高考制度,新高考采用模式,其中語文、數學、英語三科為必考科目,滿分各150分,另外考生還要依據想考取的高校及專業的要求,結合自己的興趣、愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學校采用分層抽樣的方法從高一年級1000名(其中男生550名,女生450名)學生中抽取了
名學生進行調查.
(1)已知抽取的名學生中有女生45名,求
的值及抽取的男生的人數.
(2)該校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目,且只能選擇一個科目),得到如下
列聯表.
選擇“物理” | 選擇“地理” | 總計 | |
男生 | 10 | ||
女生 | 25 | ||
總計 |
(i)請將列聯表補充完整,并判斷是否有以上的把握認為選擇科目與性別有關系.
(ii)在抽取的選擇“地理”的學生中按性別分層抽樣抽取6名,再從這6名學生中抽取2名,求這2名中至少有1名男生的概率.
附:,其中
.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰,某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現從該村的蜜柚樹上隨機摘下了個蜜柚進行測重,其質量分別在
,
,
,
,
,
(單位:克)中,其頻率分布直方圖如圖所示,
(Ⅰ)已經按分層抽樣的方法從質量落在,
的蜜柚中抽取了
個,現從這
個蜜柚中隨機抽取
個。求這
個蜜柚質量均小于
克的概率:
(Ⅱ)以各組數據的中間值代表這組數據的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有個蜜柚等待出售,某電商提出了兩種收購方案:
方案一:所有蜜柚均以元/千克收購;
方案二:低于克的蜜柚以
元/個收購,高于或等于
克的以
元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面
為平行四邊形,平面
平面
,
是邊長為4的等邊三角形,
,
是
的中點.
(1)求證:;
(2)若直線與平面
所成角的正弦值為
,求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋中裝有除顏色外形狀大小完全相同的6個小球,其中有4個編號為1,2, 3, 4的紅球,2個編號為A、B的黑球,現從中任取2個小球.;
(1)求所取2個小球都是紅球的概率;
(2)求所取的2個小球顏色不相同的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一汽車廠生產三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產量如表(單位:輛):
轎車 | 轎車 | 轎車 | |
舒適型 | 100 | 150 | |
標準型 | 300 | 450 | 600 |
按分層抽樣的方法在這個月生產的轎車中抽取50輛,其中有類轎車10輛.
(1)求的值;
(2)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經檢測它們的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把這8輛轎車的得分看作一個總體,從中任取一個數,求該數與樣本平均數之差的絕對值不超過0.5的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓錐(其中
為頂點,
為底面圓心)的側面積與底面積的比是
,則圓錐
與它的外接球(即頂點在球面上且底面圓周也在球面上)的體積比為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線:
,(
為參數),將曲線
上的所有點的橫坐標縮短為原來的
,縱坐標縮短為原來的
后得到曲線
,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
。
(1)求曲線的極坐標方程和直線l的直角坐標方程;
(2)設直線l與曲線交于不同的兩點A,B,點M為拋物線
的焦點,求
的值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com