【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(Ⅰ)請分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數n的函數關系式;
(Ⅱ)根據該公司所有派送員100天的派送記錄,發現派送員的日平均派送單數滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在(,
](n=1,2,3,4,5)時,日平均派送量為50+2n單.若將頻率視為概率,回答下列問題:
①根據以上數據,設每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數學期望及方差;
②結合①中的數據,根據統計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由。
(參考數據:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)
【答案】(Ⅰ)甲方案的函數關系式為: ,乙方案的函數關系式為:
;(Ⅱ)①見解析,②見解析.
【解析】
(Ⅰ)由題意可得甲方案中派送員日薪(單位:元)與送單數
的函數關系式為:
, 乙方案中派送員日薪
(單位:元)與送單數
的函數關系式為:
.
(Ⅱ)①由題意求得X的分布列,據此計算可得,
,
.
②答案一:由以上的計算可知,遠小于
,即甲方案日工資收入波動相對較小,所以小明應選擇甲方案.
答案二:由以上的計算結果可以看出,,所以小明應選擇乙方案.
(Ⅰ)甲方案中派送員日薪(單位:元)與送單數
的函數關系式為:
,
乙方案中派送員日薪(單位:元)與送單數
的函數關系式為:
(Ⅱ)①由已知,在這100天中,該公司派送員日平均派送單數滿足如下表格:
單數 | 52 | 54 | 56 | 58 | 60 |
頻率 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 |
所以的分布列為:
152 | 154 | 156 | 158 | 160 | |
0.2 | 0.3 | 0.2 | 0.2 | 0.1 |
所以
所以的分布列為:
140 | 152 | 176 | 200 | |
0.5 | 0.2 | 0.2 | 0.1 |
所以
②答案一:由以上的計算可知,雖然,但兩者相差不大,且
遠小于
,即甲方案日工資收入波動相對較小,所以小明應選擇甲方案.
答案二:由以上的計算結果可以看出,,即甲方案日工資期望小于乙方案日工資期望,所以小明應選擇乙方案.
【點睛】
本題主要考查頻率分布直方圖,數學期望與方差的含義與實際應用等知識,意在考查學生的轉化能力和計算求解能力.
【題型】解答題
【結束】
20
【題目】已知橢圓C:(a>b>0)的左、右焦點分別為F1,F2,且離心率為
,M為橢圓上任意一點,當∠F1MF2=90°時,△F1MF2的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點A是橢圓C上異于橢圓頂點的一點,延長直線AF1,AF2分別與橢圓交于點B,D,設直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.
【答案】(Ⅰ)(Ⅱ)見解析
【解析】
(Ⅰ)由題意可求得,則
,橢圓
的方程為
.
(Ⅱ)設,
,
當直線的斜率不存在或直線
的斜率不存在時,
.
當直線、
的斜率存在時,
,設直線
的方程為
,聯立直線方程與橢圓方程,結合韋達定理計算可得直線
的斜率為
,直線
的斜率為
,則
.綜上可得:直線
與
的斜率之積為定值
.
(Ⅰ)設由題
,
解得,則
,
橢圓
的方程為
.
(Ⅱ)設,
,當直線
的斜率不存在時,
設,則
,直線
的方程為
代入
,
可得
,
,則
,
直線
的斜率為
,直線
的斜率為
,
,
當直線的斜率不存在時,同理可得
.
當直線、
的斜率存在時,
設直線
的方程為
,
則由消去
可得:
,
又,則
,代入上述方程可得:
,
,
則
,
設直線的方程為
,同理可得
,
直線
的斜率為
直線
的斜率為
,
.
所以,直線與
的斜率之積為定值
,即
.
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知向量 =(2a,1),
=(2b﹣c,cosC),且
∥
.
(Ⅰ)求角A的大小;
(Ⅱ)若 ,求b+c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點A,B以及CD的中點P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現要在矩形ABCD內(含邊界),且與A,B等距離的一點O處建造一個污水處理廠,并鋪設排污管道AO,BO,OP,設排污管道的總長為km.
(I)設,將
表示成
的函數關系式;
(II)確定污水處理廠的位置,使三條排污管道的總長度最短,并求出最短值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=,g(x)=
,若函數y=f(g(x))+a有三個不同的零點x1,x2,x3(其中x1<x2<x3),則2g(x1)+g(x2)+g(x3)的取值范圍為______.
【答案】
【解析】
首先研究函數和函數
的性質,然后結合韋達定理和函數的性質求解2g(x1)+g(x2)+g(x3)的取值范圍即可.
由題意可知:,
將對勾函數的圖象向右平移一個單位,再向上平移一個單位即可得到函數
的圖象,其圖象如圖所示:
由可得
,
據此可知在區間
上單調遞增,在區間
上單調遞減,
繪制函數圖象如圖所示:
則的最大值為
,
,
函數y=f(g(x))+a有三個不同的零點,則,
令,則
,
整理可得:,由韋達定理有:
.
滿足題意時,應有:,
,
故.
【點睛】
本題主要考查導數研究函數的性質,等價轉化的數學思想,復合函數的性質及其應用等知識,意在考查學生的轉化能力和計算求解能力.
【題型】填空題
【結束】
17
【題目】已知等比數列{}的前n項和為
,且滿足2
=
+m(m∈R).
(Ⅰ)求數列{}的通項公式;
(Ⅱ)若數列{}滿足
,求數列{
}的前n項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣ax,a>0.
(1)記f(x)的極小值為g(a),求g(a)的最大值;
(2)若對任意實數x恒有f(x)≥0,求f(a)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了探究車流量與的濃度是否相關,現采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與
的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)求關于
的線性回歸方程;(提示數據:
)
(2)(I)利用(1)所求的回歸方程,預測該市車流量為12萬輛時的濃度;(II)規定:當一天內
的濃度平均值在
內,空氣質量等級為優;當一天內
的濃度平均值在
內,空氣質量等級為良,為使該市某日空氣質量為優或者為良,則應控制當天車流量不超過多少萬輛?(結果以萬輛為單位,保留整數)參考公式:回歸直線的方程是
,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱臺ABC﹣A1B1C1中,平面α過點A1 , B1 , 且CC1∥平面α,平面α與三棱臺的面相交,交線圍成一個四邊形.
(Ⅰ)在圖中畫出這個四邊形,并指出是何種四邊形(不必說明畫法、不必說明四邊形的形狀);
(Ⅱ)若AB=8,BC=2B1C1=6,AB⊥BC,BB1=CC1 , 平面BB1C1C⊥平面ABC,二面角B1﹣AB﹣C等于60°,求直線AB1與平面α所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(2,2),圓C:x2+y2-8y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.
(1)求M的軌跡方程;
(2)當|OP|=|OM|時,求l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com