(本小題滿分12分) 已知函數,
(1)設函數,求函數
的單調區間;
(2)若在區間(
)上存在一點
,使得
成立,求
的取值范圍.
(1)
(2)或
.
【解析】
試題分析:(1)先求出函數h(x)的導函數,分情況討論讓其大于0求出增區間,小于0求出減區間即可得到函數的單調區間;
(2)先把f(x0)<g(x0)成立轉化為h(x0)<0,即函數h(x)=x+-alnx在[1,e]上的最小值小于零;再結合(Ⅱ)的結論分情況討論求出其最小值即可求出a的取值范圍
在上存在一點
,使得
,即
函數在
上的最小值小于零. …由(Ⅱ)可知
①即,即
時,
在
上單調遞減,
所以的最小值為
,由
可得
,
因為,所以
;
②當,即
時,
在
上單調遞增,
所以最小值為
,由
可得
;③當
,即
時,
可得
最小值為
,
因為,所以,
故
此時,不成立.
綜上討論可得所求的范圍是:
或
.
考點:本試題主要考查了利用導函數來研究函數的極值.
點評:解決該試題的關鍵是利用導函數來研究函數的極值時,分三步①求導函數,②求導函數為0的根,③判斷根左右兩側的符號,若左正右負,原函數取極大值;若左負右正,原函數取極小值。
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com