【題目】某品牌電腦體驗店預計全年購入臺電腦,已知該品牌電腦的進價為
元/臺,為節約資金決定分批購入,若每批都購入
(
為正整數)臺,且每批需付運費
元,儲存購入的電腦全年所付保管費與每批購入電腦的總價值(不含運費)成正比(比例系數為
),若每批購入
臺,則全年需付運費和保管費
元.
(1)記全年所付運費和保管費之和為元,求
關于
的函數.
(2)若要使全年用于支付運費和保管費的資金最少,則每批應購入電腦多少臺?
科目:高中數學 來源: 題型:
【題目】設函數(
為自然對數的底數,
).
(1)當時,求函數
的圖象在
處的切線方程;
(2)若函數在區間
上具有單調性,求
的取值范圍;
(3)若函數有且僅有
個不同的零點
,且
,
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】歐陽修《賣油翁》中寫道:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌滴瀝之,自錢孔入,而錢不濕.已知銅錢是直徑為4 cm的圓面,中間有邊長為1 cm的正方形孔,若隨機向銅錢上滴一滴油(油滴整體落在銅錢內),則油滴整體(油滴是直徑為0.2 cm的球)正好落入孔中的概率是_____.(不作近似計算)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】各項均為非負整數的數列{an}同時滿足下列條件:
①a1=m(mN*);②ann-1(n≥2);③n是a1+a2+‥+an的因數(n ≥1).
(Ⅰ)當m=5時,寫出數列{an}的前五項;
(Ⅱ)若數列{an}的前三項互不相等,且n≥3時,an為常數,求m的值;
(Ⅲ)求證:對任意正整數m,存在正整數M,使得n≥M時,an為常數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創新藥研發成了當務之急.為此,某藥企加大了研發投入,市場上治療一類慢性病的特效藥品的研發費用
(百萬元)和銷量
(萬盒)的統計數據如下:
研發費用 | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量 | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求與
的相關系數
精確到0.01,并判斷
與
的關系是否可用線性回歸方程模型擬合?(規定:
時,可用線性回歸方程模型擬合);
(2)該藥企準備生產藥品的三類不同的劑型
,
,
,并對其進行兩次檢測,當第一次檢測合格后,才能進行第二次檢測.第一次檢測時,三類劑型
,
,
合格的概率分別為
,
,
,第二次檢測時,三類劑型
,
,
合格的概率分別為
,
,
.兩次檢測過程相互獨立,設經過兩次檢測后
,
,
三類劑型合格的種類數為
,求
的數學期望.
附:(1)相關系數
(2),
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,左、右焦點分別為
、
,
為橢圓上異于長軸端點的點,且
的最大面積為
.
(1)求橢圓的標準方程
(2)若直線是過點
點的直線,且
與橢圓
交于不同的點
、
,是否存在直線
使得點
、
到直線
,的距離
、
,滿足
恒成立,若存在,求
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
底面
,
是直角梯形,
,
,
,
是
的中點.
(1)求證:平面平面
;
(2)求二面角的余弦值;
(3)直線上是否存在一點
,使得
平面
,若存在,求出
的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
,
為直線
上的任意一點.
(1)為曲線
上任意一點,求
兩點間的最小距離;
(2)過點作曲線
的兩條切線,切點為
,曲線
的對稱中心為點
,求四邊形
面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com