精英家教網 > 高中數學 > 題目詳情

已知橢圓以坐標軸為對稱軸,且長軸是短軸的3倍,并且過點P(3,0),則橢圓的標準方程為:________.


分析:根據長軸是短軸的3倍,設出短軸2b,表示出長軸6b,然后分焦點在x軸上和y軸上兩種情況寫出橢圓的標準方程,把P的坐標分別代入橢圓方程即可求出相應b的值,然后分別寫出橢圓的標準方程即可.
解答:設橢圓的短軸為2b(b>0),長軸為a=6b,所以橢圓的標準方程為+=1或+=1
把P(3,0)代入橢圓方程分別得:=1或=1,解得b=1或b=3
所以橢圓的標準方程為+y2=1或+=1
故答案為:+y2=1或+=1
點評:此題考查學生會利用待定系數法求橢圓的標準方程,是一道基礎題.學生做題時應注意兩種情況.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓以坐標軸為對稱軸,且長軸是短軸的3倍,并且過點P(3,0),則橢圓的標準方程為:
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)求經過點(
5
2
,-
3
2
)
,且與橢圓
x2
9
+
y2
5
=1
有共同焦點的橢圓方程;
(2)已知橢圓以坐標軸為對稱軸,且長軸長是短軸長的3倍,點P(3,0)在該橢圓上,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(Ⅰ)求經過點(-
3
2
,
5
2
),且與橢圓9x2+5y2=45有共同焦點的橢圓方程;
(Ⅱ)已知橢圓以坐標軸為對稱軸,且長軸長是短軸長的3倍,點P(3,0)在該橢圓上,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知橢圓以坐標軸為對稱軸,且長軸是短軸的3倍,并且過點P(3,0),求橢圓的方程;

(2)已知橢圓的中心在原點,以坐標軸為對稱軸,且經過兩點P1,1)、P2(-,-),求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇省鹽城市東臺中學高三(上)數學階段練習(二)(文科)(解析版) 題型:解答題

(1)求經過點,且與橢圓有共同焦點的橢圓方程;
(2)已知橢圓以坐標軸為對稱軸,且長軸長是短軸長的3倍,點P(3,0)在該橢圓上,求橢圓的方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视