【題目】某項競賽分為初賽、復賽、決賽三個階段進行,每個階段選手要回答一個問題.規定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復賽、決賽的概率分別是
,且各階段通過與否相互獨立.
(1)求該選手在復賽階段被淘汰的概率;
(2)設該選手在競賽中回答問題的個數為,求
的分布列、數學期望.
科目:高中數學 來源: 題型:
【題目】【選修4-4:坐標系與參數方程】
極坐標系的極點為直角坐標系的原點,極軸為
軸的正半軸,兩神坐標系中的長度單位相同.已知曲線
的極坐標方程為
,
.
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)在曲線上求一點,使它到直線
:
(
為參數)的距離最短,寫出
點的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
的離心率為
,且過點
.
(1)求的方程;
(2)若動點在直線
上,過
作直線交橢圓
于
兩點,使得
,再過
作直線
,證明:直線
恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,拋物線
在第一象限內的點
到焦點的距離為
,曲線
在點
處的切線交
軸于點
,直線
經過點
且垂直于
軸.
(Ⅰ)求線段的長;
(Ⅱ)設不經過點和
的動直線
交曲線
于點
和
,交
于點
,若直線
的斜率依次成等差數列,試問:
是否過定點?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 面
,
,
,
為
的中點.
(Ⅰ)求證: 平面
.
(Ⅱ)求二面角的余弦值.
(Ⅲ)在線段上是否存在點
,使得
,若存在,求出
的值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com