精英家教網 > 高中數學 > 題目詳情

如圖,設AB,CD⊙O的兩直徑,過BPB垂直于AB

并與CD延長線相交于點P,過P作直線與⊙O分別交于

E,F兩點,連結AE,AF分別與CD交于G、H

(Ⅰ)設EF中點為,求證:O、B、P四點共圓

(Ⅱ)求證:OG =OH.

證明:(Ⅰ)

易知,

所以四點共圓.

(Ⅱ)由(Ⅰ)

,交

連結

,

所以

所以四點共圓.

所以,由此,

的中點,的中點,所以,所以OG =OH

練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年吉林省吉林市高三三模(期末)理科數學試卷(解析版) 題型:解答題

如圖,設AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F兩點,連結AE,AF分別與CD交于G、H

(Ⅰ)設EF中點為,求證:O、、B、P四點共圓

(Ⅱ)求證:OG =OH.

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年吉林省吉林市高三三模(期末)文科數學試卷(解析版) 題型:解答題

如圖,設AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F兩點,連結AE,AF分別與CD交于G、H

(Ⅰ)設EF中點為,求證:O、、B、P四點共圓

(Ⅱ)求證:OG =OH.

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年吉林省吉林市高三第三次模擬考試文科數學試卷(解析版) 題型:解答題

如圖,設AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F兩點,連結AE,AF分別與CD交于G、H

(Ⅰ)設EF中點為,求證:O、、B、P四點共圓

(Ⅱ)求證:OG =OH.

 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,設AB,CD⊙O的兩直徑,過BPB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F兩點,連結AE,AF分別與CD交于G,H

(Ⅰ)設EF中點為,求證:O、B、P四點共圓.

(Ⅱ)求證:OG =OH.

 


查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视