【題目】(本小題滿分14分)一種畫橢圓的工具如圖1所示.是滑槽
的中點,短桿ON可繞O轉動,長桿MN通過N處鉸鏈與ON連接,MN上的栓子D可沿滑槽AB滑動,且
,
.當栓子D在滑槽AB內作往復運動時,帶動N繞
轉動,M處的筆尖畫出的橢圓記為C.以
為原點,
所在的直線為
軸建立如圖2所示的平面直角坐標系.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設動直線與兩定直線
和
分別交于
兩點.若直線
總與橢圓
有且只有一個公共點,試探究:
的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】某工廠每年定期對職工進行培訓以提高工人的生產能力(生產能力是指一天加工的零件數).現有、
兩類培訓,為了比較哪類培訓更有利于提高工人的生產能力,工廠決定從同一車間隨機抽取100名工人平均分成兩個小組分別參加這兩類培訓.培訓后測試各組工人的生產能力得到如下頻率分布直方圖.
(1)記表示事件“參加
類培訓工人的生產能力不低于130件”,估計事件
的概率;
(2)填寫下面列聯表,并根據列聯表判斷是否有的把握認為工人的生產能力與培訓類有關:
生產能力 | 生產能力 | 總計 | |
| 50 | ||
| 50 | ||
總計 | 100 |
(3)根據頻率分布直方圖,判斷哪類培訓更有利于提高工人的生產能力,請說明理由.
參考數據
0.15 | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程選講
在平面直角坐標系中,以原點為極點,以軸非負半軸為極軸建立極坐標系, 已知曲線
的極坐標方程為
,直線
的極坐標方程為
.
(Ⅰ)寫出曲線和直線
的直角坐標方程;
(Ⅱ)設直線過點
與曲線
交于不同兩點
,
的中點為
,
與
的交點為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,
底面ABC,
,
,D,E分別是
,
的中點.
(Ⅰ)求證:;
(Ⅱ)求二面角的大小;
(Ⅲ)線段上是否存在點F,使
平面
?若存在,求
的值:若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某餐廳通過查閱了最近5次食品交易會參會人數 (萬人)與餐廳所用原材料數量
(袋),得到如下統計表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數 | 13 | 9 | 8 | 10 | 12 |
原材料 | 32 | 23 | 18 | 24 | 28 |
(1)根據所給5組數據,求出關于
的線性回歸方程
.
(2)已知購買原材料的費用 (元)與數量
(袋)的關系為
,
投入使用的每袋原材料相應的銷售收入為700元,多余的原材料只能無償返還,據悉本次交易大會大約有15萬人參加,根據(1)中求出的線性回歸方程,預測餐廳應購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入
原材料費用).
參考公式: ,
.
參考數據: ,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左、右焦點分別為
,
,下頂點為
,
為坐標原點,點
到直線
的距離為
,
為等腰直角三角形.
(1)求橢圓的標準方程;
(2)直線與橢圓
交于
,
兩點,若直線
與直線
的斜率之和為
,證明:直線
恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據統計,某蔬菜基地西紅柿畝產量的增加量(百千克)與某種液體肥料每畝使用量
(千克)之間的對應數據的散點圖,如圖所示.
(1)依據數據的散點圖可以看出,可用線性回歸模型擬合與
的關系,請計算相關系數
并加以說明(若
,則線性相關程度很高,可用線性回歸模型擬合);
(2)求關于
的回歸方程,并預測液體肥料每畝使用量為12千克時,西紅柿畝產量的增加量
約為多少?
附:相關系數公式,參考數據:
,
.
回歸方程中斜率和截距的最小二乘估計公式分別為:
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com