【題目】生于瑞士的數學巨星歐拉在1765年發表的《三角形的幾何學》一書中有這樣一個定理:“三角形的外心、垂心和重心都在同一直線上!边@就是著名的歐拉線定理,在中,
分別是外心、垂心和重心,
為
邊的中點,下列四個結論:(1)
;(2)
;(3)
;(4)
正確的個數為( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,圓
:
與
軸的正半軸交于點
,以點
為圓心的圓
:
與圓
交于
,
兩點.
(1)當時,求
的長;
(2)當變化時,求
的最小值;
(3)過點的直線
與圓A切于點
,與圓
分別交于點
,
,若點
是
的中點,試求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地棚戶區改造建筑平面示意圖如圖所示,經規劃調研確定,棚改規劃建筑用地區域近似為圓面,該圓面的內接四邊形是原棚戶區建筑用地,測量可知邊界
萬米,
萬米,
萬米.
(1)請計算原棚戶區建筑用地的面積及
的長;
(2)因地理條件的限制,邊界不能更改,而邊界
可以調整,為了提高棚戶區建筑用地的利用率,請在圓弧
上設計一點
,使得棚戶區改造后的新建筑用地
的面積最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1的底面邊長是2,側棱長是,D是AC的中點。
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大;
(3)在線段AA1上是否存在一點E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的長;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設動點是圓
上任意一點,過
作
軸的垂線,垂足為
,若點
在線段
上,且滿足
.
(1)求點的軌跡
的方程;
(2)設直線與
交于
,
兩點,點
坐標為
,若直線
,
的斜率之和為定值3,求證:直線
必經過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的兩個焦點分別為,
,過
作橢圓長軸的垂線交橢圓于點
,若
為等腰直角三角形,則橢圓的離心率是( )
A. B.
C.
D.
【答案】C
【解析】試題分析:解:設點P在x軸上方,坐標為(),∵
為等腰直角三角形,∴|PF2|=|F1F2|,
,故選D.
考點:橢圓的簡單性質
點評:本題主要考查了橢圓的簡單性質.橢圓的離心率是高考中選擇填空題常考的題目.應熟練掌握圓錐曲線中a,b,c和e的關系
【題型】單選題
【結束】
8
【題目】“”是“對任意的正數
,
”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出如下結論:
①函數是奇函數;
②存在實數,使得
;
③若是第一象限角且
,則
;
④是函數
的一條對稱軸方程;
⑤函數的圖形關于點
成中心對稱圖形.
其中正確的結論的序號是__________.(填序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中(為坐標原點),已知兩點
,
,且三角形
的內切圓為圓
,從圓
外一點
向圓引切線
,
為切點。
(1)求圓的標準方程.
(2)已知點,且
,試判斷點
是否總在某一定直線
上,若是,求出直線
的方程;若不是,請說明理由.
(3)已知點在圓
上運動,求
的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的右焦點為
,
為直線
上一點,線段
交
于點
,若
,則
__________.
【答案】
【解析】
由條件橢圓:
∴
橢圓的右焦點為F,可知F(1,0),
設點A的坐標為(2,m),則=(1,m),
∴,
∴點B的坐標為,
∵點B在橢圓C上,
∴,解得:m=1,
∴點A的坐標為(2,1),.
答案為: .
【題型】填空題
【結束】
16
【題目】四棱錐中,
面
,
是平行四邊形,
,
,點
為棱
的中點,點
在棱
上,且
,平面
與
交于點
,則異面直線
與
所成角的正切值為__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com