【題目】如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=,O,M分別為AB,VA的中點.
(1)求證:平面MOC⊥平面VAB.
(2)求三棱錐V-ABC的體積.
科目:高中數學 來源: 題型:
【題目】(本小題只理科做,滿分14分)如圖,已知平面
,
,△
是正三角形,
,且
是
的中點.
(1)求證:平面
;
(2)求證:平面平面
;
(3)求平面與平面
所成銳二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區間[2a,a+1]上不單調,求實數a的取值范圍;
(3)在區間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區間的頻率估計最高氣溫位于該區間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,滿足
,數列
滿足
.
(1)求數列、
的通項公式;
(2),求數列
的前
項和
;
(3)對任意的正整數,是否存在正整數
,使得
?若存在,請求出
的所有值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某機械廠欲從米,
米的矩形鐵皮中裁剪出一個四邊形
加工成某儀器的零件,裁剪要求如下:點
分別在邊
上,且
,
.設
,四邊形
的面積為
(單位:平方米).
(1)求關于
的函數關系式,求出定義域;
(2)當的長為何值時,裁剪出的四邊形
的面積最小,并求出最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com