如圖,三棱錐P-ABC中,已知PA^平面ABC, PA=3,PB=PC=BC="6," 求二面角P-BC-A的正弦值
科目:高中數學 來源: 題型:解答題
已知梯形中,
∥
,
,
,
、
分別是
、
上的點,
∥
,
,
是
的中點.沿
將梯形
翻折,使平面
⊥平面
(如圖).
(I)當時,求證:
;
(II)若以、
、
、
為頂點的三棱錐的體積記為
,求
的最大值;
(III)當取得最大值時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖所示的幾何體是由以等邊三角形為底面的棱柱被平面
所截而得,已
知
平面
,
,
,
,
為
的中點,
面
.
(Ⅰ)求的長;
(Ⅱ)求證:面面
;
(Ⅲ)求平面與平面
相交所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點,又PB=BC,PA=AB。
(1)求證:PC⊥平面BDE;
(2)若點Q是線段PA上任一點,判斷BD、DQ的位置關系,并證明你的結論;
(3)若AB=2,求三棱錐B-CED的體積
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分10分)
已知某幾何體的正視圖、側視圖都是直角三角形,俯視圖是矩形(尺寸如圖所示)。
(I)利用所給提示圖,作出該幾何體的直觀圖;
(Ⅱ)求該幾何體的體積V。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
如下的三個圖中,上面的是一個長方體截去一個角所得多面體的直觀圖,它的正視圖和側視圖在下面畫出(單位:
)
(Ⅰ)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;
(Ⅱ)按照給出的尺寸,求該多面體的體積;
(Ⅲ)在所給直觀圖中連結
,證明:
∥面
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com