精英家教網 > 高中數學 > 題目詳情

[例] 定義在R上的函數,,當x>0時,,且對任意的ab∈R,有fa+b)=fa)·fb).

(1)求證:f(0)=1;

(2)求證:對任意的x∈R,恒有fx)>0;

(3)求證:fx)是R上的增函數;

(4)若fx)·f(2xx2)>1,求x的取值范圍.


解析:

抽象函數問題要充分利用“恒成立”進行“賦值”,從關鍵等式和不等式的特點入手。

(1)證明:令a=b=0,則f(0)=f 2(0).

f(0)≠0,∴f(0)=1.

(2)證明:當x<0時,-x>0,

f(0)=fx)·f(-x)=1.

f(-x)=>0.又x≥0時fx)≥1>0,

x∈R時,恒有fx)>0.

(3)證明:設x1x2,則x2x1>0.

fx2)=fx2x1+x1)=fx2x1)·fx1).

x2x1>0,∴fx2x1)>1.

fx1)>0,∴fx2x1)·fx1)>fx1).

fx2)>fx1).∴fx)是R上的增函數.

(4)解:由fx)·f(2xx2)>1,f(0)=1得f(3xx2)>f(0).又fx)是R上的增函數,

∴3xx2>0.∴0<x<3.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

例4、已知函數y=f(x)是定義在R上的周期函數,周期T=5,函數y=f(x)(-1≤x≤1)是奇函數.又知y=f(x)在[0,1]上是一次函數,在[1,4]上是二次函數,且在x=2時函數取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

記函數f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數f(x)圖象上的不動點.
(1)若函數f(x)=
3x+a
x+b
圖象上有兩個關于原點對稱的不動點,求實數a,b應滿足的條件;
(2)設點P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數f(x)圖象上的兩個不動點分別為A1,A2,P為函數f(x)圖象上的另一點,其縱坐標yP>3,求點P到直線A1A2距離的最小值及取得最小值時點P的坐標.
(3)下述命題“若定義在R上的奇函數f(x)圖象上存在有限個不動點,則不動點有奇數個”是否正確?若正確,請給予證明;若不正確,請舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數f(x)圖象上的不動點.
(1)若函數f(x)=
3x+ax+b
圖象上有兩個關于原點對稱的不動點,求a,b應滿足的條件;
(2)在(1)的條件下,若a=8,記函數f(x)圖象上的兩個不動點分別為A、B,點M為函數圖象上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;
(3)下述命題“若定義在R上的奇函數f(x)圖象上存在有限個不動點,則不動點的有奇數個”是否正確?若正確,給出證明,并舉一例;若不正確,請舉一反例說明.

查看答案和解析>>

科目:高中數學 來源:高考數學一輪復習必備(第09課時):第二章 函數-函數的解析式及定義域(解析版) 題型:解答題

例4、已知函數y=f(x)是定義在R上的周期函數,周期T=5,函數y=f(x)(-1≤x≤1)是奇函數.又知y=f(x)在[0,1]上是一次函數,在[1,4]上是二次函數,且在x=2時函數取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视