【題目】設函數.
(1)當時,求曲線
在點
處的切線方程;
(2)當時,若對任意
,不等式
恒成立,求實數
的取值范圍.
【答案】(1);(2)
.
【解析】
試題分析:(1)首先求出函數的導函數,然后由導數的幾何意義即可得出曲線在點
處的切線的斜率,最后求出其切線方程即可;(2)首先將問題“對任意
,不等式
恒成立”轉化為“
”,然后構造函數
,
,并求出導函數并進行分類討論:當
時和當
時,并分別求出其導函數并判斷其單調性,最后結合已知條件即可得出所求的結果.
試題解析:(1)當時,
,則
,
,∴
,∴曲線
在點
處的切線方程為
,即
.
(2)當時,
,
.
所以不等式等價于
.
令,
,
則.
當時,
,則函數
在
上單調遞增,所以
,
所以根據題意,知有,∴
.
當時,由
,知函數
在
上單調增減;
由,知函數
在
上單調遞增.
所以.
由條件知,,即
.
設,
,則
,
,
所以在
上單調遞減.
又,所以
與條件矛盾.
綜上可知,實數的取值范圍為
.
科目:高中數學 來源: 題型:
【題目】某商場有獎銷售中,購滿100元商品得1張獎券,多購多得,1000張獎券為一個開獎單位,設特等獎1個,一等獎10個,二等獎50個.設1張獎券中特等獎、一等獎、二等獎的事件分別為A、B、C,求:
(1)P(A),P(B),P(C);
(2)1張獎券的中獎概率;
(3)1張獎券不中特等獎且不中一等獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知甲、乙兩地相距為千米,汽車從甲地勻速行駛到乙地,速度每小時不超過
千米.已知汽車每小時的運輸成本(單位:元)由可變部分和固定部分組成:固定部分為
元,可變部分與速度
(單位;
)的平方成正比,且比例系數為
.
(1)求汽車全程的運輸成本(單位:元)關于速度
(單位;
)的函數解析式;
(2)為了全程的運輸成本最小,汽車應該以多大的速度行駛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司過去五個月的廣告費支出與銷售額
(單位:萬元)之間有下列對應數據:
2 | 4 | 5 | 6 | 8 | |
40 | 60 | 50 | 70 |
工作人員不慎將表格中的第一個數據丟失.已知
對
呈線性相關關系,且回歸方程為
,則下列說法:①銷售額
與廣告費支出
正相關;②丟失的數據(表中
處)為30;③該公司廣告費支出每增加1萬元,銷售額一定增加
萬元;④若該公司下月廣告投入8萬元,則銷售
額為70萬元.其中,正確說法有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節大豆新品種發芽率的影響,某農科所記錄了5組晝夜溫差與100顆種子發芽數,得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求出線性回歸方程,再對被選取的2組數據進行檢驗.
(1)若選取的是第1組與第5組的兩組數據,請根據第2組至第4組的數據,求出關于
的線性回歸方程
;
(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數
.
(1)當時,解不等式
;
(2)若關于的方程
的解集中恰有一個元素,求
的取值范圍;
(3)設,若對任意
,函數
在區間
上的最大值與最小值的差不超過1,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是數列
的前
項和,且滿足
,等差數列
的前
項和為
,且
,
.
(Ⅰ)求數列與
的通項公式;
(Ⅱ)若數列的通項公式為
,問是否存在互不相等的正整數
,
,
使得
,
,
成等差數列,且
,
,
成等比數列?若存在,求出
,
,
;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com