【題目】如圖,橢圓的離心率為
,且橢圓
經過點
,已知點
,過點
的動直線
與橢圓
相交于
兩點,
與
關于
軸對稱.
(1)求的方程;
(2)證明: 三點共線.
科目:高中數學 來源: 題型:
【題目】在數列中,如果對任意
都有
(
為常數),則稱
為等差比數列,
稱為公差比.現給出下列命題:
①等差比數列的公差比一定不為;
②等差數列一定是等差比數列;
③若,則數列
是等差比數列;
④若等比數列是等差比數列,則其公比等于公差比.
其中正確的命題的序號為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,函數
.
(1)求的單調遞增區間;
(2)設,問
是否存在極值,若存在,請求出極值,若不存在,請說明理由;
(3)設是函數
圖象上任意不同的兩點,線段
的中點為
,直線
的斜率為
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015 年 12 月,華中地區數城市空氣污染指數“爆表”,此輪污染為 2015 年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到華中某城市 2015 年 12 月份某星期星期一到星期日某一時間段車流量與
的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與
具有線性相關關系,求
關于
的線性回歸方程;(提示數據:
)
(2)利用(1)所求的回歸方程,預測該市車流量為 12 萬輛時的濃度.
參考公式:回歸直線的方程是,
其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某水產養殖基地要將一批海鮮用汽車從所在城市甲運至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且運費由水產養殖基地承擔.若水產養殖基地恰能在約定日期(×月×日)將海鮮送達,則銷售商一次性支付給水產養殖基地萬元;若在約定日期前送到,每提前一天銷售商將多支付給水產養殖基地
萬元;若在約定日期后送到,每遲到一天銷售商將少支付給水產養殖基地
萬元.為保證海鮮新鮮度,汽車只能在約定日期的前兩天出發,且只能選擇其中的一條公路運送海鮮,已知下表內的信息:
汽車 行駛路線 | 不堵車的情況下到達城市乙所需時間(天) | 堵車的情況下到達城市乙所需時間(天) | 堵車的概率 | 運費(萬元) |
公路 | ||||
公路 |
(注:毛利潤銷售商支付給水產養殖基地的費用
運費)
(Ⅰ)記汽車走公路時水產養殖基地獲得的毛利潤為
(單位:萬元),求
的分布列和數學期望
.
(Ⅱ)假設你是水產養殖基地的決策者,你選擇哪條公路運送海鮮有可能讓水產養殖基地獲得的毛利潤更多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,已知
是正三角形,
平面
為
的中點,
在棱
上,且
.
(1)求三棱錐的體積;
(2)求證: 平面
;
(3)若為
中點,
在棱
上,且
,求證:
平面
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com