【題目】已知圓同時滿足下列三個條件:①與
軸相切;②在直線
上截得弦長為
;③圓心在直線
上.求圓
的方程.
【答案】設所求的圓C與y軸相切,又與直線交于AB,
∵圓心C在直線上,∴圓心C(3a,a),又圓
與y軸相切,∴R=3|a|. 又圓心C到直線y-x=0的距離
在Rt△CBD中,.
∴圓心的坐標C分別為(3,1)和(-3,-1),故所求圓的方程為
或.
【解析】
試題設所求的圓C與y軸相切,又與直線交于AB,由題設知圓心,
;再由點到直線的距離公式和勾股定理能夠求出a的值,從而得到圓C的方程.
試題解析:設所求的圓C與y軸相切,又與直線交于AB,
∵圓心C在直線x-3y=0上,∴圓心,
又圓C與y軸相切,∴,
又圓心C到直線 y-x=0的距離
在Rt△CBD中,
∴圓心的坐標C分別為(3,1)和(-3,-1),故所求圓的方程為或
.
科目:高中數學 來源: 題型:
【題目】已知,
,直線AD與直線BD相交于點D,直線BD的斜率減去直線AD的斜率的差是2,設D點的軌跡為曲線C.
求曲線C的方程;
已知直線l過點
,且與曲線C交于P,Q兩點
Q異于A,
,問在y軸上是否存在定點G,使得
?若存在,求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E:的離心率是
,
,
分別為橢圓E的左右頂點,B為上頂點,
的面積為
直線l過點
且與橢圓E交于P,Q兩點.
求橢圓E的標準方程;
求
面積的最大值;
設直線
與直線
交于點N,證明:點N在定直線上,并寫出該直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
(Ⅰ)若∠APB=60°,試求點P的坐標;
(Ⅱ)若P點的坐標為(2,1),過P作直線與圓M交于C,D兩點,當CD=時,求直線CD的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小李從網上購買了一件商品,快遞員計劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時間為下午5:30-6:00.快遞員到小李家時,如果小李未到家,則快遞員會電話聯系小李.若小李能在10分鐘之內到家,則快遞員等小李回來;否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發芽多少之間的關系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發芽數,得到如下資料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,求這2天發芽的種子數均不小于25的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數據,請根據這5天中的另三天的數據,求出關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:回歸直線的斜率和截距的最小二乘估計公式分別為,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com