精英家教網 > 高中數學 > 題目詳情
(1)已知f(x-1)=x2-2x+3,x≤0,求f-1(x+1).

(2)求函數f(x)=的反函數.

解析:(1)令x-1=t,則x=t+1,

又∵x≤0,

∴t≤-1,有f(t)=(t+1)2-2(t+1)+3=t2+2,即f(x)=x2+2(x≤-1).

由y=x2+2,得x2=y-2,

∵x≤-1,

∴x=-,y≥3,得f-1(x)=-(x≥3).

∴f-1(x+1)=-(x≥2).

(2)①由y=x2-1,x≥0知y≥-1,且y=.

∴y=x2-1(x≥0)的反函數是y=(x≥-1).

②由y=2x-1(x<0)知y<-1且x=

∴y=2x-1(x<0)的反函數是y=(x<-1).

由(1)(2)知所求反函數為

f-1(x)=


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)已知f(x)=x2-1,g(x)=
1-x,x>0
2-x,x<0
,求f[g(x)]和g[f(x)]的表達式.
(2)已知函數f(x)的定義域為(0,+∞),且f(x)=2f(
1
x
x
-1,求f(x)的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是可導的函數,且f′(x)<f(x)對于x∈R恒成立,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題:
①已知f(x)+2f(
1
x
)=3x
,則函數g(x)=f(2x)在(0,1)上有唯一零點;
②對于函數f(x)=x
1
2
的定義域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2

③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),則必有0<f(b)<1;
④已知f(x)、g(x)是定義在R上的兩個函數,對任意x、y∈R滿足關系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0.則函數f(x)、g(x)都是奇函數.
其中正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)≥
x
2+x2

(1)令g(x)=
x
2+x2
,求證:g(x)是其定義域上的增函數;
(2)設fn+1(x)=f[fn(x)](n∈N+),f1(x)=f(x),用數學歸納法證明:fn(x)≥
x
2n+(2n-1)x2
 
(n∈N+,n≥2)

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知函數f(x)=x2,g(x)為一次函數,且為增函數,若f[g(x)]=4x2-20x+15,求g(x)的解析式;

(2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);

(3)f(x)是R上的奇函數,且x∈(-∞,0)時,f(x)=x2+2x,求f(x);

(4)某工廠生產一種機器的固定成本為5 000元,且每生產100部,需要增加投入2 500元,對銷售市場進行調查后得知,市場對此產品的需求量為每年500部,已知銷售收入的函數為H(x)=500x-x2,其中x是產品售出的數量,且0≤x≤500.若x為年產量,y表示利潤,求y=f(x)的解析式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视