【題目】如圖,在三棱錐PABC中,不能證明AP⊥BC的條件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
科目:高中數學 來源: 題型:
【題目】某校初三年級有名學生,隨機抽查了
名學生,測試
分鐘仰臥起坐的成績(次數),將數據整理后繪制成如圖所示的頻率分布直方圖.用樣本估計總體,下列結論正確的是( )
A. 該校初三年級學生分鐘仰臥起坐的次數的中位數為
次
B. 該校初三年級學生分鐘仰臥起坐的次數的眾數為
次
C. 該校初三年級學生分鐘仰臥起坐的次數超過
次的人數約有
人
D. 該校初三年級學生分鐘仰臥起坐的次數少于
次的人數約為
人.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了凈化空氣,某科研單位根據實驗得出,在一定范圍內,每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數關系式近似為y= 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續有效凈化,試求a的最小值(精確到0.1,參考數據: 取1.4).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面
是直角梯形,
,
,
,平面
平面
.
(Ⅰ)求證: 平面
.
(Ⅱ)求平面和平面
所成二面角(小于
)的大。
(Ⅲ)在棱上是否存在點
使得
平面
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·貴州適應性考試)如圖,在正方體ABCDA1B1C1D1中,點P是線段A1C1上的動點,則三棱錐PBCD 的俯視圖與正視圖面積之比的最大值為( )
A. 1 B.
C. D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.
(1).證明:平面PAB⊥平面PAD;
(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的參數方程為
(
為參數),以直角坐標系原點
為極點,以
軸正半軸為極軸,建立極坐標系.
(1)求曲線的極坐標方程,并說明其表示什么軌跡;
(2)若直線的極坐標方程為,求直線被曲線
截得的弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人參加微信群搶紅包游戲,規則如下:每輪游戲發個紅包,每個紅包金額為
元,
.已知在每輪游戲中所產生的
個紅包金額的頻率分布直方圖如圖所示.
(1)求的值,并根據頻率分布直方圖,估計紅包金額的眾數;
(2)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在的紅包個數為
,求
的分布列和期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com