精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,若,則下列結論:①;②;③;④,其中正確的序號為___________(把你認為正確的結論都填上).

【答案】②③④

【解析】

作出函數圖象,并設,則直線與函數圖象的四個交點的橫坐標分別為、、,可得出,再結合對稱性與對數運算可對四個命題的正誤進行判斷.

如下圖所示,設,由圖象知.

則直線與函數圖象的四個交點的橫坐標分別為、、

二次函數的圖象的對稱軸為直線,則點關于該直線對稱,

所以,,命題①錯誤;

由圖象知,,由,得,

,即,解得,命題②正確;

,可得,.

函數在區間上單調遞增,則,又

,命題③正確;

由圖象知,,則,

函數在區間上單調遞減,所以,,即.

,命題④正確.

因此,正確命題的序號為②③④.

故答案為:②③④.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2021年我省將實施新高考,新高考“依據統一高考成績、高中學業水平考試成績,參考高中學生綜合素質評價信息”進行人才選拔。我校2018級高一年級一個學習興趣小組進行社會實踐活動,決定對某商場銷售的商品A進行市場銷售量調研,通過對該商品一個階段的調研得知,發現該商品每日的銷售量(單位:百件)與銷售價格(元/件)近似滿足關系式,其中為常數已知銷售價格為3元/件時,每日可售出該商品10百件。

(1)求函數的解析式;

(2)若該商品A的成本為2元/件,根據調研結果請你試確定該商品銷售價格的值,使該商場每日銷售該商品所獲得的利潤(單位:百元)最大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在棱長為1的正方體中,點是對角線上的動點(點不重合),則下列結論正確的是____.

①存在點,使得平面平面;

②存在點,使得平面;

的面積不可能等于

④若分別是在平面與平面的正投影的面積,則存在點,使得.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校共有學生2000人,其中男生1100人,女生900人為了調查該校學生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學生每周平均課外閱讀時間(單位:小時)

1)應抽查男生與女生各多少人?

2)如圖,根據收集100人的樣本數據,得到學生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數據分組區間為.若在樣本數據中有38名女學生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯表,并判斷是否有95%的把握認為“該校學生的每周平均課外閱讀時間與性別有關”.

男生

女生

總計

每周平均課外閱讀時間不超過2小時

每周平均課外閱讀時間超過2小時

總計

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在平面直角坐標系中,動點與兩定點連線的斜率之積為,記點的軌跡為曲線.

(1)求曲線的方程;

(2)若過點的直線與曲線交于兩點,曲線上是否存在點使得四邊形為平行四邊形?若存在,求直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,直線過定點A(1,0).

(Ⅰ)若與圓相切,求的方程;

(Ⅱ)若與圓相交于P,Q兩點,線段PQ的中點為M,又的交點為N,求證: 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知點H在正方體的對角線上,∠HDA=

(1)求DH所成角的大;

(2)求DH與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,的中點.

1)求證:BM∥平面ADEF;

2)求證:平面BDE⊥平面BEC

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若恒成立,求實數的最大值

(2)在(1)成立的條件下,正實數,滿足,證明:.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视