【題目】已知函數f(x)是定義在R上的偶函數,且當x≥0時,f(x)=x|x﹣2|.若關于x的方程f2(x)+af(x)+b=0(a,b∈R)恰有10個不同實數解,則a的取值范圍為( )
A.(0,2)
B.(﹣2,0)
C.(1,2)
D.(﹣2,﹣1)
【答案】D
【解析】解:設x<0,則﹣x>0,滿足表達式f(x)=x|x﹣2|. ∴f(﹣x)=﹣x|﹣x﹣2|=﹣x|x+2|,
又∵f(x)為偶函數,∴f(﹣x)=f(x),
∴f(x)=﹣x|x+2|,
故當x<0時,f(x)=﹣x|x+2|.
則f(x)= ,
作出f(x)的圖象如圖:
設t=f(x),
由圖象知,當t>1時,t=f(x)有兩個根,
當t=1時,t=f(x)有四個根,
當0<t<1時,t=f(x)有六兩個根,
當t=0時,t=f(x)有三個根,
當t<0時,t=f(x)有0個根,
則方程[f(x)]2+af(x)+b=0等價為t2+at+b=0,
若方程[f(x)]2+af(x)+b=0(a∈R)恰好有1個不同實數解,
等價為方程t2+at+b=0有兩不同的根,
且0<t1<1,t2=1,
則t1+t2=﹣a,
即1<t1+t2<2,
則1<﹣a<2,
即﹣2<a<﹣1,
則a的取值范圍為(﹣2,﹣1),
故選D.
【考點精析】利用函數奇偶性的性質對題目進行判斷即可得到答案,需要熟知在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇.
科目:高中數學 來源: 題型:
【題目】定義在R上的偶函致y=f(x),恒有f(x+4)=f(x)﹣f(﹣2)成立,且f(0)=1,當0≤x1<x2≤2時, <0,則方程f(x)﹣lg|x|=0的根的個數為( )
A.12
B.10
C.6
D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,離心率為
,設直線
的斜率是
,且
與橢圓
交于
,
兩點.
(Ⅰ)求橢圓的標準方程.
(Ⅱ)若直線在
軸上的截距是
,求實數
的取值范圍.
(Ⅲ)以為底作等腰三角形,頂點為
,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是定義在
上的奇函數.
(1)當時,
,若當
時,
恒成立,求
的最小值;
(2)若的圖像關于
對稱,且
時,
,求當
時,
的解析式;
(3)當時,
.若對任意的
,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某園林公司準備綠化一塊半徑為200米,圓心角為 的扇形空地(如圖的扇形OPQ區域),扇形的內接矩形ABCD為一水池,其余的地方種花,若∠COP=α,矩形ABCD的面積為S(單位:平方米).
(1)試將S表示為關于α的函數,求出該函數的表達式;
(2)角α取何值時,水池的面積 S最大,并求出這個最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知任意角θ以x軸非負半軸為始邊,若終邊經過點P(x0 , y0),且|OP|=r(r>0),定義sicosθ= ,稱“sicosθ”為“正余弦函數”.對于正余弦函數y=sicosx,有同學得到如下結論: ①該函數是偶函數;
②該函數的一個對稱中心是( ,0);
③該函數的單調遞減區間是[2kπ﹣ ,2kπ+
],k∈Z.
④該函數的圖象與直線y= 沒有公共點;
以上結論中,所有正確的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知常數,數列
的前
項和為
,
,
;
(1)求數列的通項公式;
(2)若,且
是單調遞增數列,求實數
的取值范圍;
(3)若,
,對于任意給定的正整數
,是否存在正整數
、
,使得
?若存在,求出
、
的值(只要寫出一組即可);若不存在,請說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1 , F2為橢圓 的左、右焦點,F2在以
為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.
(1)求橢圓C1的方程;
(2)過點P(0,1)的直線l1交橢圓C1于A,B兩點,過P與l1垂直的直線l2交圓C2于C,D兩點,M為線段CD中點,求△MAB面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com