【題目】“地攤經濟”是李克強總理在本屆政府工作報告中向全國人民發出的口號,某生產企業積極響應號召,大力研發新產品,為了對新研發的一批產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到一組銷售數據,如表所示:
試銷單價 | 4 | 5 | 6 | 7 | 8 | 9 |
產品銷量 | 84 | 83 | 80 | 75 | 68 |
已知,
,
,
(1)試求,若變量
,
具有線性相關關系,求產品銷量
(件)關于試銷單價
(元)的線性回歸方程
;
(2)用表示用(1)中所求的線性回歸方程得到的與
對應的產品銷量的估計值.當銷售數據
對應的殘差的絕對值
時,則將銷售數據
稱為一個“好數據”.現從6個銷售數據中任取2個,求恰好2個都是“好數據”的概率.
(參考公式:線性回歸方程中,
的最小二乘估計分別為
,
)
【答案】(1);
;(2)
.
【解析】
(1)根據,可求得
,再由散點圖判斷變量
,
具有線性相關關系,然后分別求得
的值,寫出線性回歸方程.
(2)利用(1)中所求的線性回歸方程,分別求得的估計值,再根據
找出“好數據”,利用古典概型的概率求法求解.
(1)因為,
所以,
解得.
散點圖如下:
由散點圖可知:變量,
具有線性相關關系,
,
,
所以線性回歸方程為.
(2)由(1)中所求的線性回歸方程可得:
當時,
;當
時,
;當
時,
;當
時,
;當
時,
;當
時,
.
與銷售數據對比可知滿足的共有3個“好數據”:
、
、
.
從6個中選兩個共有個不同的選法,恰好2個都是“好數據”的情況共
種,
所以從6個銷售數據中任取2個,求恰好2個都是“好數據”的概率:.
科目:高中數學 來源: 題型:
【題目】第23屆冬季奧運會于2018年2月9日至2月25日在韓國平昌舉行,期間正值我市學校放寒假,寒假結束后,某校工會對全校教職工在冬季奧運會期間每天收看比賽轉播的時間作了一次調查,得到如下頻數分布表:
收看時間(單位:小時) | ||||||
收看人數 | 14 | 30 | 16 | 28 | 20 | 12 |
(1)若將每天收看比賽轉播時間不低于3小時的教職工定義為“體育達人”,否則定義為“非體育達人”,請根據頻數分布表補全列聯表:
男 | 女 | 合計 | |
體育達人 | 40 | ||
非體育達人 | 30 | ||
合計 |
并判斷能否有的把握認為該校教職工是否為“體育達人”與“性別”有關;
(2)在全!绑w育達人”中按性別分層抽樣抽取6名,再從這6名“體育達人”中選取2名作冬奧會知識講座.記其中女職工的人數為,求的
分布列與數學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“克拉茨猜想”又稱“猜想”,是德國數學家洛薩克拉茨在
年世界數學家大會上公布的一個猜想:任給一個正整數
,如果
是偶數,就將它減半;如果
為奇數就將它乘
加
,不斷重復這樣的運算,經過有限步后,最終都能夠得到
,得到
即終止運算,己知正整數
經過
次運算后得到
,則
的值為( )
A.或
B.
或
C.
D.
或
或
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的參數方程為
(
為參數),以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)寫出曲線的極坐標方程和直線
的直角坐標方程;
(2)若射線與曲線
交于
兩點,與直線
交于
點,射線
與曲線
交于
兩點,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《周髀算經》是中國最古老的天文學和數學著作,書中提到:從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣的日影子長依次成等差數列,若冬至、立春、春分的日影子長的和是37.5尺,芒種的日影子長為4.5尺,則立夏的日影子長為:( )
A.15.5尺B.12.5尺C.9.5尺D.6.5尺
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,P為直線
:
上的動點,動點Q滿足
,且原點O在以
為直徑的圓上.記動點Q的軌跡為曲線C
(1)求曲線C的方程:
(2)過點的直線
與曲線C交于A,B兩點,點D(異于A,B)在C上,直線
,
分別與x軸交于點M,N,且
,求
面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com