精英家教網 > 高中數學 > 題目詳情

【題目】在三棱柱ABCA1B1C1中,AA1⊥平面ABCABBCCA=2AA1=4,DA1B1的中點,E為棱BB1上的點,AB1⊥平面C1DE,且B1C1,D,E四點在同一球面上,則該球的表面積為( 。

A. B. 11π C. 12π D. 14π

【答案】A

【解析】

由題意,AA1⊥平面ABC,三棱柱ABCA1B1C1是直三棱柱,ABBCCA=2,底面是正的三角形.DA1B1的中點,E為棱BB1上的點,AB1⊥平面C1DE,求E為棱BB1上的位置,在求解B1C1DE三棱錐的外接球即可得球的表面積.

由題意,AA1⊥平面ABC,三棱柱ABCA1B1C1是直三棱柱,

ABBCCA=2,底面是正三角形.

AB1sinAB1B

那么DB1,

AB1⊥平面C1DE,AB1DE,DA1B1的中點,E為棱BB1上的點,

DEAB1M,

∵△ABB1∽△EB1M

那么:EB1=1

則在DB1C1E三棱錐中:B1C1=2C1D,EC1=3,DEB1D

EB1⊥平面DB1C1,

底面DB1C1是直角三角形,

∴球心在EC1在的中點上,

R

球的表面積S=4πR2=9π.

故選:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知在直角坐標系xOy中,曲線C1 (θ為參數),在以平面直角坐標系的原點O為極點,x軸的正半軸為極軸,取相同單位長度的極坐標系中,曲線C2:ρsin( )=1.
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)曲線C1上恰好存在三個不同的點到曲線C2的距離相等,分別求這三個點的極坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一個幾何體的三視圖如圖所示.

1)求此幾何體的表面積;

2)如果點在正視圖中所示位置:為所在線段中點,為頂點,求在幾何體表面上,從點到點的最短路徑的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xex﹣a(x﹣1)(a∈R)
(1)若函數f(x)在x=0處有極值,求a的值及f(x)的單調區間
(2)若存在實數x0∈(0, ),使得f(x0)<0,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知
(1)求函數y=f(x)的單調遞增區間;
(2)設△ABC的內角A滿足f(A)=2,而 ,求邊BC的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“大眾創業,萬眾創新”是李克強總理在本屆政府工作報告中向全國人民發出的口號.某生產企業積極響應號召,大力研發新產品,為了對新研發的一批產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到一組銷售數據(xi , yi)(i=1,2,…,6),如表所示:

試銷單價x(元)

4

5

6

7

8

9

產品銷量y(件)

q

84

83

80

75

68

已知 =80.
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線性相關關系,求產品銷量y(件)關于試銷單價x(元)的線性回歸方程 ;可供選擇的數據: ,
(Ⅲ)用 表示用(Ⅱ)中所求的線性回歸方程得到的與xi對應的產品銷量的估計值.當銷售數據(xi , yi)對應的殘差的絕對值 時,則將銷售數據(xi , yi)稱為一個“好數據”.現從6個銷售數據中任取3個,求“好數據”個數ξ的分布列和數學期望E(ξ).
(參考公式:線性回歸方程中 , 的最小二乘估計分別為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數f(x)=sin( +x)(cosx﹣2sinx)+sin2x的圖象向左平移 個單位長度后得到函數g(x),則g(x)具有性質(
A.在(0, )上單調遞增,為奇函數
B.周期為π,圖象關于( )對稱
C.最大值為 ,圖象關于直線x= 對稱
D.在(﹣ )上單調遞增,為偶函數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數方程為 (t為參數),在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ=2 cos( +θ).
(I)求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)設直線l與曲線C相交于M,N兩點,求|MN|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P﹣ABCD的三視圖如圖所示,則四棱錐P﹣ABCD的四個側面中面積最大的是(
A.3
B.2
C.6
D.8

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视