【題目】6男4女站成一排,求滿足下列條件的排法共有多少種.(列出算式即可)
(1)任何2名女生都不相鄰,有多少種排法?
(2)男甲不在首位,男乙不在末位,有多少種排法?
(3)男生甲、乙、丙順序一定,有多少種排法?
(4)男甲在男乙的左邊(不一定相鄰)有多少種不同的排法?
【答案】(1);(2)
;(3)
;(4)
【解析】
(1)任何兩個女生都不得相鄰,利用插空法,問題得以解決,
(2)男甲不在首位,男乙不在末位,利用間接法,故問題得以解決,
(3)男生甲、乙、丙順序一定,利用定序法,問題得以解決.
(4)由于男甲要么在男乙的左邊,要么在男乙的右邊,故利用除法可得結論.
(1)任何2名女生都不相鄰,則把女生插空,所以先排男生再讓女生插到男生的空中,共有·
種不同排法.
(2)甲在首位的排法共有種,乙在末位的排法共有
種,甲在首位且乙在末位的排法有
種,因此共有(
-2
+
)種排法.
(3)10人的所有排列方法有種,其中甲、乙、丙的排序有
種,其中只有一種符合題設要求,所以甲、乙、丙順序一定的排法有
種.
(4)男甲在男乙的左邊的10人排列與男甲在男乙的右邊的10人排列數相等,而10人排列數恰好是這二者之和,因此滿足條件的有種排法.
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c.已知asinA=4bsinB,ac= (a2﹣b2﹣c2).(13分)
(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B﹣A)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn , 且S4=4S2 , a2+a4=10.
(1)求數列{an}通項公式;
(2)若數列{bn}滿足 +
+…+
=1﹣
,n∈N* , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,直線
與E交于A、B兩點,且
,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為,記直線CA、CB的斜率分別為
,證明:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求二面角F-BE-D的余弦值;
(2)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com