【題目】如圖,正方形AMDE的邊長為2,B,C分別為AM,MD的中點.在五棱錐P-ABCDE中,F為棱PE的中點,平面ABF與棱PD,PC分別交于點G,H.
(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE.求直線BC與平面ABF所成角的大小,并求線段PH的長.
【答案】(1)詳見解析(2)點H的坐標為().PH=2.
【解析】試題分析:(1)運用線面平行的判定定理和性質定理即可證得;(2)由于PA⊥底面ABCDE,底面AMDE為正方形,建立如圖的空間直角坐標系Axyz,分別求出A,B,C,E,P,F,及向量BC的坐標,設平面ABF的法向量為n=(x,y,z),求出一個值,設直線BC與平面ABF所成的角為α,運用sinα=|cos<n, >|,求出角α;設H(u,v,w),再設
(0<λ<1),用λ表示H的坐標,再由n
=0,求出λ和H的坐標,再運用空間兩點的距離公式求出PH的長.
試題解析:
(1)在正方形AMDE中,因為B是AM的中點,所以AB∥DE.
又因為AB平面PDE,所以AB∥平面PDE.
因為AB平面ABF,且平面ABF∩平面PDE=FC,
所以AB∥FG.
(2)因為PA⊥底面ABCDE,所以PA⊥AB,PA⊥AE.
如圖建立空間直角坐標系A-xyz,
則A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),=(1,1,0).
設平面ABF的法向量為n=(x,y,z),則
即
令z=1,則y=-1.所以n=(0,-1,1).
設直線BC與平面ABF所成角為α,則
sinα=|cos<n, >|=|
|=
.
因此直線BC與平面ABF所成角的大小為.
設點H的坐標為(u,v,w).
因為點H在棱PC上,所以可設=λ
(0<λ<1),
即(u,v,w-2)=λ(2,1,-2),
所以u=2λ,u=λ,w=2-2λ.
因為n是平面ABF的法向量,所以n·=0,
即(0,-1,1)·(2λ,λ,2-2λ)=0.
解得λ=,所以點H的坐標為(
,
,
).
所以PH==2.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= -lnx-
.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求證:lnx≥-
(Ⅲ)判斷曲線y=f(x)是否位于x軸下方,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體中,四邊形ABCD為菱形,對角線AC與BD的交點為O,四邊形DCEF為梯形,EF∥DC,FD=FB.
(Ⅰ)若DC=2EF,求證:OE∥平面ADF;
(Ⅱ)求證:平面AFC⊥平面ABCD;
(Ⅲ)若AB=FB=2,AF=3,∠BCD=60°,求AF與平面ABCD所成角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·雞西一模)在正方體ABCD-A1B1C1D1中,P為正方形A1B1C1D1四邊上的動點,O為底面正方形ABCD的中心,M,N分別為AB,BC中點,點Q為平面ABCD內一點,線段D1Q與OP互相平分,則滿足的實數λ的值有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為R的函數f(x),若f(x)在(-∞,0)和(0,+∞)上均有零點,則稱函數f(x)為“含界點函數”,則下列四個函數中,不是“含界點函數”的是( )
A. f(x)=x2+bx-1(b∈R) B. f(x)=2-|x-1|
C. f(x)=2x-x2 D. f(x)=x-sin x
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=x3-kx,其中實數k為常數.
(1)當k=4時,求函數的單調區間;
(2)若曲線y=f(x)與直線y=k只有一個交點,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據統計,目前微信用戶已達10億,2016年,諸多傳統企業大佬紛紛嘗試進入微商渠道,讓這個行業不斷地走向正規化、規范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產業轉型升級,某品牌飲料公司對微商銷售情況進行中期調研,從某地區隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數,葉為個位數.
(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優秀微商,其余為非優秀微商,根據莖葉圖推斷該地區110家微商中有幾家優秀?
(2)從隨機抽取的6家微商中再任取2家舉行消費者回訪調查活動,求恰有1家是優秀微商的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓右頂點與右焦點的距離為
,短軸長為
(I)求橢圓的方程;
(Ⅱ)過左焦點F的直線與橢圓分別交于A、B兩點,若三角形OAB的面積為求直線AB的方程。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com