【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,G是PB的中點.
(1)根據三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)根據三視圖,可得該幾何體為正四棱錐,正方形
的邊長為2,正四棱錐的高為
,由此可得該幾何體的直觀圖.
(Ⅱ)①在直觀圖中,設正方形的中心為
,利用三角形的中位線證明
.再由直線和平面平行的判定定理證得
面
.
②連接,則
,取
的中點
,連接
,則
,即可求此幾何體的側面積.
試題解析:(1)該幾何體的直觀圖如圖所示.
(2)如圖,①連接AC,BD交于點O,連接OG,
因為G為PB的中點,O為BD的中點,所以OG∥PD,又OG平面AGC,PD平面AGC,所以PD∥平面AGC.
②連接PO,由三視圖,PO⊥平面ABCD,所以AO⊥PO.又AO⊥BO,BO∩PO=O,所以AO⊥平面PBD,因為AO平面AGC,所以平面PBD⊥平面AGC.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點.
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現在頸椎病患者越來越多,甚至大學生也出現了頸椎病,年輕人患頸椎病多與工作、生活方式有關,某調查機構為了了解大學生患有頸椎病是否與長期過度使用電子產品有關,在遂寧市中心醫院隨機的對入院的50名大學生進行了問卷調查,得到了如下的4×4列聯表:
未過度使用 | 過度使用 | 合計 | |
未患頸椎病 | 15 | 5 | 20 |
患頸椎病 | 10 | 20 | 30 |
合計 | 25 | 25 | 50 |
(1)是否有99.5%的把握認為大學生患頸錐病與長期過度使用電子產品有關?
(2)已知在患有頸錐病的10名未過度使用電子產品的大學生中,有3名大學生又患有腸胃炎,現在從上述的10名大學生中,抽取3名大學生進行其他方面的排查,記選出患腸胃炎的學生人數為,求
的分布列及數學期望.
參考數據與公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區2008年至2014年中,每年的居民人均純收入y(單位:千元)的數據如下表:
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對變量t與y進行相關性檢驗,得知t與y之間具有線性相關關系.
(1)求y關于t的線性回歸方程;
(2)預測該地區2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上且以2為周期的偶函數,當0≤x≤1時,f(x)=x2.如果函數g(x)=f(x)-(x+m)有兩個零點,則實數m的值為( )
A.2k(k∈Z) B.2k或2k+ (k∈Z)
C.0 D.2k或2k- (k∈Z)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的方程為x﹣y+4=0,曲線C的參數方程為.
(1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為,判斷點P與直線l的位置關系;
(2)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某權威機構發布了2014年度“城市居民幸福排行榜”,某市成為本年度城市最“幸福城”.隨后,該市某校學生會組織部分同學,用“10分制”隨機調查“陽光”社區人們的幸福度.現從調查人群中隨機抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分數(以小數點前的一位數字為莖,小數點后的一位數字為葉):
(1)指出這組數據的眾數和中位數;
(2)若幸福度不低于9.5分,則稱該人的幸福度為“極幸!保髲倪@16人中隨機選取3人,至多有1人是“極幸!钡母怕;
(3)以這16人的樣本數據來估計整個社區的總體數據,若從該社區(人數很多)任選3人,記表示抽到“極幸!钡娜藬,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠今年1月、2月、3月生產某種產品的數量分別是1萬件、2萬件、1.3萬件,為了預測以后每個月的產量,以這三個月的產品數量為依據,用一個函數模擬該產品的月產量y與月份x的關系,模擬函數可以選用二次函數或函數y=abx+c(其中a,b,c為常數),已知4月份該產品的產量為1.37萬件,請問用以上哪個函數作為模擬函數較好?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com