精英家教網 > 高中數學 > 題目詳情

【題目】甲、乙兩位同學進入新華書店購買數學課外閱讀書籍,經過篩選后,他們都對三種書籍有購買意向,已知甲同學購買書籍的概率分別為,乙同學購買書籍的概率分別為,假設甲、乙是否購買三種書籍相互獨立.

1)求甲同學購買3種書籍的概率;

2)設甲、乙同學購買2種書籍的人數為,求的概率分布列和數學期望.

【答案】(1);(2)分布列見解析,.

【解析】

1)這是相互獨立事件,所以甲購買書籍的概率直接相乘即可.(2)基本事件為甲購買兩本書和乙購買兩本書的概率,所以先求出基本事件的概率,然后再求分布列.

(1)記“甲同學購買3種書籍”為事件A,則.

答:甲同學購買3種書籍的概率為.

(2)設甲、乙同學購買2種書籍的概率分別為,.

,

,

所以,所以.

,

.

所以X的概率分布為

X

0

1

2

P

.

答:所求數學期望為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(本小題滿分分)

已知圓,過點作直線交圓、兩點.

)當經過圓心時,求直線的方程.

)當直線的傾斜角為時,求弦的長.

)求直線被圓截得的弦長時,求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數).

(1)若不等式的解集為,求的取值范圍;

(2)當時,解不等式;

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列關于四棱柱的說法:

①四條側棱互相平行且相等;

②兩對相對的側面互相平行;

③側棱必與底面垂直;    

④側面垂直于底面.

其中正確結論的個數為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,若對任意,存在,,則實數的取值范圍為_____.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣1+ (a∈R,e為自然對數的底數).
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)求函數f(x)的極值;
(3)當a=1的值時,若直線l:y=kx﹣1與曲線y=f(x)沒有公共點,求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某數學興趣小組為了研究人的腳的大小與身高的關系,隨機抽測了20位同學,得到如下數據:

序號

1

2

3

4

5

6

7

8

9

10

身高(厘米)

192

164

172

177

176

159

171

166

182

166

腳長(碼)

48

38

40

43

44

37

40

39

46

39

序號

11

12

13

14

15

16

17

18

19

20

身高(厘米)

169

178

167

174

168

179

165

170

162

170

腳長(碼)

43

41

40

43

40

44

38

42

39

41

(Ⅰ)請根據“序號為5的倍數”的幾組數據,求出關于的線性回歸方程;

(Ⅱ)若“身高大于175厘米”的為“高個”,“身高小于等于175厘米”的為“非高個”;“腳長大于42碼”的為“大腳”,“腳長小于等于42碼”的為“非大腳”.請根據上表數據完成列聯表,并根據列聯表中數據說明能有多大的把握認為腳的大小與身高之間有關系.

附表及公式:,,.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

列聯表:

高個

非高個

總計

大腳

非大腳

總計

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在菱形ABCD中,∠A=60°,AB= ,將△ABC沿BD折起到△PBD的位置,若平面PBD⊥平面CBD,則三棱錐P﹣BCD的外接球體積為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線為參數),為參數).

(1)化的參數方程為普通方程,并說明它們分別表示什么曲線;

(2)若上的點對應的參數為上的動點,求的中點到直線為參數)距離的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视