精英家教網 > 高中數學 > 題目詳情

【題目】某人從一魚池中捕得120條魚,做了記號之后,再放回池中,經過適當的時間后,再從池中捕得100條魚,結果發現有記號的魚為10條(假定魚池中不死魚,也不增加),則魚池中大約有魚( 。
A.120條
B.1200條
C.130條
D.1000條

【答案】B
【解析】解:設池中有N條魚,第一次捕得120條作上記號后放入水池中,則池中有記號的魚占 ,
第二次捕得100條,則這100條魚是一個樣本,
其中有記號的魚占 ,
用樣本來估計總體分布,
∴令= ,
∴N=1200.
故選B.
【考點精析】通過靈活運用用樣本的頻率分布估計總體分布,掌握樣本數據的頻率分布表和頻率分布直方圖,是通過各小組數據在樣本容量中所占比例大小來表示數據的分布規律,它可以讓我們更清楚的看到整個樣本數據的頻率分布情況,并由此估計總體的分布情況即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】梯形BDEF所在平面垂直于平面ABCD于BD,EF∥BD,EF=DE= BD,BD=BC=CD= AB= AD=2,DE⊥BC.

(1)求證:DE⊥平面ABCD;
(2)求平面AEF與平面CEF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執行如圖所示的程序框圖,輸出S的值為(

A.14
B.20
C.30
D.55

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2017黑龍江雙鴨山市四模如圖是函數在區間上的圖象,為了得到這個函數的圖象,只需將的圖象上所有的點

A. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

B. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變

C. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

D. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐P﹣ABCD中,PA⊥底面ABCD,且PA=AB=AD=CD,AB∥CD,∠ADC=90°.
(1)在側棱PC上是否存在一點Q,使BQ∥平面PAD?證明你的結論;
(2)求證:平面PBC⊥平面PCD;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】要得到y=sin(﹣2x+ )的圖象,只需將y=sin(﹣2x)的圖象(
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某校今年準備報考飛行員學生的體重情況,將所得的數據整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數為12,則報考飛行員的總人數是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sin(ωx+φ)(ω>0,﹣ ≤φ< ),f(0)=﹣ ,且函數f(x)圖象上的任意兩條對稱軸之間距離的最小值是
(1)求函數f(x)的解析式;
(2)若f( )= <α< ),求cos(α+ )的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了監控某種零件的一條生產線的生產過程,檢驗員每隔30 min從該生產線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內依次抽取的16個零件的尺寸:

抽取次序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經計算得, , , ,其中為抽取的第個零件的尺寸,

(1)求 的相關系數,并回答是否可以認為這一天生產的零件尺寸不隨生產過程的進行而系統地變大或變小(若,則可以認為零件的尺寸不隨生產過程的進行而系統地變大或變小).

(2)一天內抽檢零件中,如果出現了尺寸在之外的零件,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對當天的生產過程進行檢查.

(。⿵倪@一天抽檢的結果看,是否需對當天的生產過程進行檢查?

(ⅱ)在之外的數據稱為離群值,試剔除離群值,估計這條生產線當天生產的零件尺寸的均值與標準差.(精確到0.01)

附:樣本 的相關系數,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视