【題目】在極坐標系中,點 P的極坐標是 ,曲線 C的極坐標方程為
.以極點為坐標原點,極軸為 x軸的正半軸建立平面直角坐標系,斜率為﹣1的直線 l經過點P.
(1)寫出直線 l的參數方程和曲線 C的直角坐標方程;
(2)若直線 l和曲線C相交于兩點A,B,求 的值.
科目:高中數學 來源: 題型:
【題目】已知 f(x+1)=f(x﹣1),f(x)=f(﹣x+2),方程 f(x)=0 在[0,1]內有且只有一個 根 x=,則 f(x)=0 在區間[0,2016]內根的個數為( )
A. 2015 B. 1007 C. 2016 D. 1008
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】愛心超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完根據往年銷售經驗,每天需求量與當天最高氣溫
單位:
有關
如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間
,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶
為了確定六月份的訂購計劃,統計了前三年六月份每天的最高氣溫數據,得到下面的頻數分布表:
最高氣溫 | ||||||
天數 | 2 | 16 | 36 | 25 | 7 | 4 |
(1)求六月份這種酸奶一天的需求量不超過300瓶的頻率;
(2)當六月份有一天這種酸奶的進貨量為450瓶時,求這一天銷售這種酸奶的平均利潤(單位:元)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓過點
,且圓心在直線
上.
(1)求圓的方程;
(2)平面上有兩點,點
是圓
上的動點,求
的最小值;
(3)若是
軸上的動點,
分別切圓
于
兩點,試問:直線
是否恒過定點?若是,求出定點坐標,若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】求經過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2|x+1|+|x﹣a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函數f(x)的最小值為3,求實數 a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著我國經濟模式的改變,電商已成為當今城鄉種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,每售出噸該商品可獲利潤
萬元,未售出的商品,每噸虧損
萬元根據往年的銷售資料,得到該商品一個銷售季度內市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了
噸該商品,現以
單位:噸,
)表示下一個銷售季度的市場需求量,
(單位:萬 元)表示該電商下“個銷售季度內經銷該商品獲得的利潤.
(1)視分布在各區間內的頻率為相應的概率,求
;
(2)將表示為
的函數,求出該函數表達式;
(3)在頻率分布直方圖的市場需求量分組中,若以市場需求量落入該區間的頻率作為市場需求量的概率,求該季度利潤不超過萬元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數分別為2、3、4,乙袋中紅色、黑色、白色小球的個數均為3,某人用左手從甲袋中取球,用右手從乙袋中取球,
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若一次在同一袋中取出兩球,如果兩球顏色相同則稱這次取球獲得成功。某人第一次左手先取兩球,第二次右手再取兩球,記兩次取球的獲得成功的次數為隨機變量X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一元二次函數的最大值為,其圖象的對稱軸為
,且與
軸兩個交點的橫坐標的平方和為
.
(1)求該一元二次函數;
(2)要將該函數圖象的頂點平移到原點,請說出平移的方式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com