精英家教網 > 高中數學 > 題目詳情

【題目】在極坐標系中,點 P的極坐標是 ,曲線 C的極坐標方程為 .以極點為坐標原點,極軸為 x軸的正半軸建立平面直角坐標系,斜率為﹣1的直線 l經過點P.
(1)寫出直線 l的參數方程和曲線 C的直角坐標方程;
(2)若直線 l和曲線C相交于兩點A,B,求 的值.

【答案】
(1)解:由曲線C的極坐標方程 可得

,

因此曲線C的直角坐標方程為

,點P的直角坐標為 ,

直線l的傾斜角為135°,

所以直線l的參數方程為 為參數).


(2)解:將 為參數)代入 ,

,設A,B對應參數分別為t1t2

,根據直線參數方程 t的幾何意義,得:


【解析】(1)由曲線C的極坐標方程能求出曲線C的直角坐標方程,求出點P的直角坐標為 ,直線l的傾斜角為135°,由此能求出直線l的參數方程.(2)將 為參數)代入 ,得 ,設A,B對應參數分別為t1t2 , 根據直線參數方程t的幾何意義,能求出結果.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知 f(x+1)=f(x﹣1),f(x)=f(﹣x+2),方程 f(x)=0 [0,1]內有且只有一個 x=,則 f(x)=0 在區間[0,2016]內根的個數為

A. 2015 B. 1007 C. 2016 D. 1008

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】愛心超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完根據往年銷售經驗,每天需求量與當天最高氣溫單位:有關如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間,需求量為300瓶;如果最高氣溫低于20,需求量為200為了確定六月份的訂購計劃,統計了前三年六月份每天的最高氣溫數據,得到下面的頻數分布表:

最高氣溫

天數

2

16

36

25

7

4

(1)求六月份這種酸奶一天的需求量不超過300瓶的頻率;

(2)當六月份有一天這種酸奶的進貨量為450瓶時,求這一天銷售這種酸奶的平均利潤(單位:元)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓過點,且圓心在直線上.

(1)求圓的方程;

(2)平面上有兩點,點是圓上的動點,求的最小值;

(3)若軸上的動點,分別切圓兩點,試問:直線是否恒過定點?若是,求出定點坐標,若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求經過直線L13x + 4y – 5 = 0與直線L22x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程

1)與直線2x + y + 5 = 0平行 ;

2)與直線2x + y + 5 = 0垂直;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2|x+1|+|x﹣a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函數f(x)的最小值為3,求實數 a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著我國經濟模式的改變,電商已成為當今城鄉種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元根據往年的銷售資料,得到該商品一個銷售季度內市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品,現以單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬 元)表示該電商下“個銷售季度內經銷該商品獲得的利潤.

(1)視分布在各區間內的頻率為相應的概率,求;

(2)將表示為的函數,求出該函數表達式;

(3)在頻率分布直方圖的市場需求量分組中,若以市場需求量落入該區間的頻率作為市場需求量的概率,求該季度利潤不超過萬元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數分別為2、3、4,乙袋中紅色、黑色、白色小球的個數均為3,某人用左手從甲袋中取球,用右手從乙袋中取球,

1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;

2)若一次在同一袋中取出兩球,如果兩球顏色相同則稱這次取球獲得成功。某人第一次左手先取兩球,第二次右手再取兩球,記兩次取球的獲得成功的次數為隨機變量X,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一元二次函數的最大值為,其圖象的對稱軸為,且與軸兩個交點的橫坐標的平方和為.

1)求該一元二次函數;

2)要將該函數圖象的頂點平移到原點,請說出平移的方式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视