精英家教網 > 高中數學 > 題目詳情

在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是(   )

A.若的觀測值為,我們有99%的把握認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺病
B.從獨立性檢驗可知有99%的把握認為吸煙與患肺病有關系時,我們說某人吸煙,那么他有99%的可能患有肺病
C.若從統計量中求出有95% 的把握認為吸煙與患肺病有關系,是指有5% 的可能性使得推判出現錯誤
D.以上三種說法都不正確

C

解析試題分析:選項A,若的觀測值為,我們有99%的把握認為吸煙與患肺病有關系,只能說100個吸煙的人中有99%的可能患有肺病,但不是必然;選項B中,同上,可能性大,不是必然患有肺;選項C中若從統計量中求出有95% 的把握認為吸煙與患肺病有關系,是指有5% 的可能性使得推判出現錯誤,是個正確的命題;選項D中,因為C正確,顯然也不對;綜上可知,選C.
考點:獨立性檢驗.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:單選題

某車間為了規定工時定額,需要確定加工零件所花費的時間,為此進行了次試驗,根據收集到
的數據(如下表),由最小二乘法求得回歸直線方程,利用下表中數據推斷的值為( )

零件數(個)





加工時間





 
A.          B.        C.          D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

利用獨立性檢驗來考慮兩個分類變量是否有關系時,通過查閱下表來確定“有關系”的可信度。如果,那么就有把握認為“有關系”的百分比為(    )























A.25%     B.95%      C.5%      D.97.5%

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

某企業開展職工技能比賽,并從參賽職工中選1人參加該行業全國技能大賽.經過6輪選拔,甲、乙兩人成績突出,得分情況如莖葉圖所示.

若甲乙兩人的平均成績分別是,,則下列說法正確的是(   ).

A.,乙比甲成績穩定,應該選乙參加比賽 
B.,甲比乙成績穩定,應該選甲參加比賽 
C.,甲比乙成績穩定,應該選甲參加比賽 
D.,乙比甲成績穩定,應該選乙參加比賽 

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

下表是某廠1~4月份用水量(單位:百噸)的一組數據:

由散點圖可知,用水量y與月份x之間有較好的線性相關關系,其線性回歸直線方程是=-0.7xa,則a等于(  )

A.10.5B.5.15C.5.2D.5.25

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

下面的莖葉圖表示柜臺記錄的一天銷售額情況(單位:元),則銷售額中的中位數是(     )

A.30.5 B.31 C.31.5 D.32

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

為了考察兩個變量之間的線性相關性,甲、乙兩位同學各自獨立地做100次和150次試驗,并且利用線性回歸方法,求得回歸直線分別為,已知兩人在試驗中發現對變量的觀測數據的平均值都是,對變量的觀測數據的平均值都是,那么下列說法正確的是(     )

A.有交點 B.相交,但交點不一定是
C.必定平行 D.必定重合

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

某小賣部銷售一品牌飲料的零售價x(元/評)與銷售量y(瓶)的關系統計如下:

零售價x(元/瓶)
3.0
3.2
3.4
3.6
3.8
4.0
銷量y(瓶)
50
44
43
40
35
28
已知的關系符合線性回歸方程,其中.當單價為4.2元時,估計該小賣部銷售這種品牌飲料的銷量為(    )
A.20    B.22     C.24      D.26

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

如圖是總體密度曲線,下列說法正確的是(  )

A.組距越大,頻率分布折線圖越接近于它
B.樣本容量越小,頻率分布折線圖越接近于它
C.陰影部分的面積代表總體在(a,b)內取值的百分比
D.陰影部分的平均高度代表總體在(a,b)內取值的百分比

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视