試題分析:由題意,先用定積分求出b,再由g(x)=2lnx-2bx
2-kx在[1,+∞)上單調遞減,利用其導數在[1,+∞)上恒小于0建立不等式求出實數k的取值范圍.根據題意可知,函數在給定區間上的定積分

,∴g(x)=2lnx-x
2-kx∴g′(x)=

-2x-k,∵g(x)=2lnx-2bx
2-kx在[1,+∞)上單調遞減,∴g′(x)=

-2x-k<0在[1,+∞)上恒成立,即k>

-2x在[1,+∞)上恒成立,∵

-2x在[1,+∞)上遞減,∴

-2x≤0,∴k≥0,由此知實數k的取值范圍是[0,+∞),故答案為:[0,+∞).
點評:本題考查定積分在求面積中的應用,解題的關鍵是利用定積分求出b,再利用導數與單調性的關系將函數遞減轉化為導數值恒負,由此不等式恒成立求出參數的范圍,本題綜合性很強,需要多次轉化變形,運算量較大,解題時一定要注意變形正確,運算嚴謹,避免因變形,運算出錯.