精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=(1﹣x2)ex
(Ⅰ)討論f(x)的單調性;
(Ⅱ)當x≥0時,f(x)≤ax+1,求a的取值范圍.

【答案】解:(Ⅰ)因為f(x)=(1﹣x2)ex , x∈R,
所以f′(x)=(1﹣2x﹣x2)ex ,
令f′(x)=0可知x=﹣1±
當x<﹣1﹣ 或x>﹣1+ 時f′(x)<0,當﹣1﹣ <x<﹣1+ 時f′(x)>0,
所以f(x)在(﹣∞,﹣1﹣ ),(﹣1+ ,+∞)上單調遞減,在(﹣1﹣ ,﹣1+ )上單調遞增;
(Ⅱ)由題可知f(x)=(1﹣x)(1+x)ex . 下面對a的范圍進行討論:
①當a≥1時,設函數h(x)=(1﹣x)ex , 則h′(x)=﹣xex<0(x>0),
因此h(x)在[0,+∞)上單調遞減,
又因為h(0)=1,所以h(x)≤1,
所以f(x)=(1﹣x)h(x)≤x+1≤ax+1;
②當0<a<1時,設函數g(x)=ex﹣x﹣1,則g′(x)=ex﹣1>0(x>0),
所以g(x)在[0,+∞)上單調遞增,
又g(0)=1﹣0﹣1=0,
所以ex≥x+1.
因為當0<x<1時f(x)>(1﹣x)(1+x)2 ,
所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),
取x0= ∈(0,1),則(1﹣x0)(1+x02﹣ax0﹣1=0,
所以f(x0)>ax0+1,矛盾;
③當a≤0時,取x0= ∈(0,1),則f(x0)>(1﹣x0)(1+x02=1≥ax0+1,矛盾;
綜上所述,a的取值范圍是[1,+∞).
【解析】(Ⅰ)求出函數的導數,求出極值點,利用導函數的符號,判斷函數的單調性即可.
(Ⅱ)化簡f(x)=(1﹣x)(1+x)ex . f(x)≤ax+1,下面對a的范圍進行討論:
①當a≥1時,②當0<a<1時,設函數g(x)=ex﹣x﹣1,則g′(x)=ex﹣1>0(x>0),推出結論;③當a≤0時,推出結果,然后得到a的取值范圍.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知向量 、 滿足| |=1,| |=2,則| + |+| |的最小值是 , 最大值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長2的正方形,E,F分別為線段DD1,BD的中點.

(1)求證:EF∥平面ABC1D1

(2)AA1=2,求異面直線EF與BC所成的角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg),其頻率分布直方圖如下:
(Ⅰ)記A表示時間“舊養殖法的箱產量低于50kg”,估計A的概率;
(Ⅱ)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養殖方法有關:

箱產量<50kg

箱產量≥50kg

舊養殖法

新養殖法

(Ⅲ)根據箱產量的頻率分布直方圖,對兩種養殖方法的優劣進行比較.
附:

P(K2≥K)

0.050

0.010

0.001

K

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若橢圓的中心在原點,焦點在軸上,點是橢圓上的一點,軸上的射影恰為橢圓的左焦點,與中心的連線平行于右頂點與上頂點的連線,且左焦點與左頂點的距離等于,試求橢圓的離心率及其方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1+ )(1+x)6展開式中x2的系數為(  )
A.15
B.20
C.30
D.35

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ae2x+(a﹣2)ex﹣x.(12分)
(1)討論f(x)的單調性;
(2)若f(x)有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數學家歐拉在1765年發現,任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點,若其歐拉線的方程為,則頂點的坐標為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视