【題目】已知集合A={(x,y)|(x﹣3﹣4cosq)2+(y﹣5﹣4sinq)2=4,θ∈R},B={(x,y)|3x+4y﹣19=0}.記集合P=A∩B,則集合P所表示的軌跡的長度為( )
A.8B.8
C.8
D.8
【答案】A
【解析】
由圓(x﹣3﹣4cosq)2+(y﹣5﹣4sinq)2=4的圓心為(3+4cosq,5+4sinq),可知其圓心的軌跡方程為(x﹣3)2+(y﹣5)2=16,易知動圓(x﹣3﹣4cosq)2+(y﹣5﹣4sinq)2=4所形成的圖形為圓環,利用垂徑定理結合圖像,即可得解.
集合A={(x,y)|(x﹣3﹣4cosq)2+(y﹣5﹣4sinq)2=4,θ∈R},
圓的圓心(3+4cosq,5+4sinq),半徑為2,
所以圓的圓心的軌跡方程為:(x﹣3)2+(y﹣5)2=16,
如圖:
集合A的圖形是圖形中兩個圓中間的圓環部分,
圓心C(3,5)到直線3x+4y﹣19=0的距離為:d2,
所以,A∩B就是|MN|=22
8
.
故選:A.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線AC與BD的交點,AB=2,∠BAD=60°,M是PD的中點.
(Ⅰ)求證:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)當三棱錐C﹣PBD的體積等于 時,求PA的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,垂直于
所在的平面
,
為
的直徑,
是弧
上的一個動點(不與端點
重合),
為
上一點,且
是線段
上的一個動點(不與端點
重合).
(1)求證:平面
;
(2)若是弧
的中點,
是銳角,且三棱錐
的體積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的直角坐標方程及直線
的普通方程;
(2)設直線與曲線
交于
,
兩點(
點在
點左邊)與直線
交于點
.求
和
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有限數列,定義集合
為數列
的伴隨集合.
(Ⅰ)已知有限數列和數列
.分別寫出
和
的伴隨集合;
(Ⅱ)已知有限等比數列,求
的伴隨集合
中各元素之和
;
(Ⅲ)已知有限等差數列,判斷
是否能同時屬于
的伴隨集合
,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:1(a
0,b
0)的左右焦點分別為F1,F2,點O為坐標原點,點P在雙曲線的右支上,且滿足|F1F2|=2|OP|.若直線PF2與雙曲線C只有一個交點,則雙曲線C的離心率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=a(lnx2)
1在定義域(0,2)內有兩個極值點.
(1)求實數a的取值范圍;
(2)設x1和x2是f(x)的兩個極值點,求證:lnx1+lnx2+lna0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,以x軸的非負半軸為極軸,建立極坐標系,已知直線l的參數方程為
(t為參數),圓C的極坐標方程是
.
(1)求直線l與圓C的公共點個數;
(2)在平面直角坐標系中,圓C經過伸縮變換得到曲線
,設
為曲線
上一點,求
的最大值,并求相應點M的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com