【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),以原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的方程為
,定點
,點
是曲線
上的動點,
為
的中點.
(1)求點的軌跡
的直角坐標方程;
(2)已知直線與
軸的交點為
,與曲線
的交點為
,若
的中點為
,求
的長.
科目:高中數學 來源: 題型:
【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調查,將收集的數據分成六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.
(1)請根據直方圖中的數據填寫下面的列聯表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?
(2)現按照“課外體育達標”與“課外體育不達標”進行分層抽樣,抽取8人,再從這8名學生中隨機抽取3人參加體育知識問卷調查,記“課外體育不達標”的人數為,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高中一年級600名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(1)從總體的600名學生中隨機抽取一人,估計其分數小于70的概率;
(2)已知樣本中分數小于40的學生有5人,試估計總體中分數在區間[40,50)內的人數;
(3)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等.試估計總體中男生和女生人數的比例.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果函數f(x)=x3-x滿足:對于任意的x1,x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,則a的取值范圍是( )
A. [-,
]
B. [-,
]
C. (-∞,- ]∪[
,+∞)
D. (-∞,- ]∪[
,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,向高為H的水瓶A,B,C,D同時以等速注水,注滿為止;
(1)若水深h與注水時間t的函數圖象是下圖中的a,則水瓶的形狀是________;
(2)若水量ν與水深h的函數圖像是下圖中的b,則水瓶的形狀是________;
(3)若水深h與注水時間t的函數圖象是下圖中的c,則水瓶的形狀是________;
(4)若注水時間t與水深h的函數圖象是下圖中的d,則水瓶的形狀是________。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的單調函數f(x)滿足f(2)=,且對任意x,y∈R,都有f(x+y)=f(x)+f(y).
(1)求證:f(x)為奇函數;
(2)若f(k·3x)+f(3x-9x-2)<0對任意x∈R恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列:
滿足:
,
或1(
).對任意
,都存在
,使得
.,其中
且兩兩不相等.
(I)若.寫出下列三個數列中所有符合題目條件的數列的序號;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若
,證明:
;
(Ⅲ)若,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:
的離心率為
,上、下頂點分別為
、
,點
在橢圓上,且異于點
、
,直線
、
與直線
:
分別交于點
、
,且
面積的最大值為
.
(1)求橢圓的標準方程;
(2)求線段的長的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com