精英家教網 > 高中數學 > 題目詳情
若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于,那么正數m的最小取值是( )
A.5
B.
C.7
D.
【答案】分析:因為m要最小,所以要最大,將區間[-1,2)等分成19個區間,每個的長度為,使數列{bn}有且僅有b19,b20兩項差的絕對值小于,則的最大值為,故m的最小值為
解答:解:因為m要最小,所以要最大,
將區間[-1,2)等分成19個區間,
每個的長度為,
b1,b2,…,b19取各段的左端點,
b20在第十九段上任取一點,
則使數列{bn}有且僅有b19,b20兩項差的絕對值小于
的最大值為,
∴m的最小值為
故選B.
點評:本題考查數列與函數的綜合,解題時要認真審題,仔細解答,注意挖掘題設中的隱含條件,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列關于數列的命題中,正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•煙臺二模)若數列{an}滿足an+12-
a
2
n
=d
(d為正常數,n∈N+),則稱{an}為“等方差數列”.甲:數列{an}為等方差數列;乙:數列{an}為等差數列,則甲是乙的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•三明模擬)若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于
1
m
,那么正數m的最小取值是( 。

查看答案和解析>>

科目:高中數學 來源:2013年福建省三明市高三質量檢查數學試卷(解析版) 題型:選擇題

若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于,那么正數m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视