【題目】某服裝銷售公司進行關于消費檔次的調查,根據每人月均服裝消費額將消費檔次分為0-500元;500-1000元;1000-1500元;1500-2000元四個檔次,針對兩類人群各抽取100人的樣本進行統計分析,各檔次人數統計結果如下表所示:
0~ 500元 | 500~ 1000元 | 1000~ 1500元 | 1500~ 2000元 | |
A類 | 20 | 50 | 20 | 10 |
B類 | 50 | 30 | 10 | 10 |
月均服裝消費額不超過1000元的人群視為中低消費人群,超過1000元的視為中高收入人群.
(Ⅰ)從類樣本中任選一人,求此人屬于中低消費人群的概率;
(Ⅱ)從兩類人群中各任選一人,分別記為甲、乙,估計甲的消費檔次不低于乙的消費檔次的概率;
(Ⅲ)以各消費檔次的區間中點對應的數值為該檔次的人均消費額,估計兩類人群哪類月均服裝消費額的方差較大(直接寫出結果,不必說明理由).
科目:高中數學 來源: 題型:
【題目】如圖.已知等腰梯形ABCD中,AB∥CD,AD=AB=CD,M是的CD的中點.N是AC與BM的交點,將△BCM沿BM向上翻折成△BPM,使平面BPM⊥平面ABMD
(I)求證:AB⊥PN.
(Ⅱ)若E為PA的中點.求證:EN∥平面PDM.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:如果函數f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 , ,則稱函數f(x)是[a,b]上的“雙中值函數”.已知函數f(x)=x3﹣x2+a是[0,a]上的“雙中值函數”,則實數a的取值范圍是( 。
A.(,
)
B.(,3)
C.( , 1)
D.( , 1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是由
個實數組成的有序數組,滿足下列條件:①
,
;②
;③
,
.
(Ⅰ)當時,寫出滿足題設條件的全部
;
(Ⅱ)設,其中
,求
的取值集合;
(Ⅲ)給定正整數,求
的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐S﹣ABC中,AB⊥BC,AB=BC= , SA=SC=2,二面角S﹣AC﹣B的余弦值是
, 若S、A、B、C都在同一球面上,則該球的表面積是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點,直線
,點
在直線
上移動,
是線段
與
軸的交點,
.
(Ⅰ) 求動點的軌跡
的方程;
(Ⅱ)直線與
軸相交于點
,過
的直線
交軌跡
于
兩點,
試探究點與以
為直徑的圓的位置關系,并加以說明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com