【題目】已知c>0,且c≠1,設p:函數y=cx在R上單調遞減;q:函數f(x)=x2﹣2cx+1在( ,+∞)上為增函數,若“p且q”為假,“p或q”為真,求實數c的取值范圍.
【答案】解∵函數y=cx在R上單調遞減,∴0<c<1.
即p:0<c<1,
∵c>0且c≠1,∴¬p:c>1.
又∵f(x)=x2﹣2cx+1在( ,+∞)上為增函數,∴c≤
.
即q:0<c≤ ,
∵c>0且c≠1,∴¬q:c> 且c≠1.
又∵“p或q”為真,“p且q”為假,
∴p真q假,或p假q真.
①當p真,q假時,{c|0<c<1}∩{c|c> ,且c≠1}={c|
}.
②當p假,q真時,{c|c>1}∩{c|0<c }=.
綜上所述,實數c的取值范圍是{c| }
【解析】由函數y=cx在R上單調遞減,知p:0<c<1,¬p:c>1;由f(x)=x2﹣2cx+1在( ,+∞)上為增函數,知q:0<c≤
,¬q:c>
且c≠1.由“p或q”為真,“p且q”為假,知p真q假,或p假q真,由此能求出實數c的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,側棱
底面
,
,
為
的中點,
,四棱錐
的體積為
.
(Ⅰ)求證: 平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}滿足Sn=2n﹣an(n∈N*).
(1)計算a1 , a2 , a3 , a4 , 并由此猜想通項公式an;
(2)用數學歸納法證明(Ⅰ)中的猜想.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (x>0).
(1)試判斷函數f(x)在(0,+∞)上單調性并證明你的結論;
(2)若f(x)> 恒成立,求整數k的最大值;
(3)求證:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n﹣3 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“一帶一路”近年來成為了百姓耳熟能詳的熱門詞匯,對于旅游業來說,“一帶一路”戰略的提出,讓“絲路之旅”超越了旅游產品、旅游線路的簡單范疇,賦予了旅游促進跨區域融合的新理念. 而其帶來的設施互通、經濟合作、人員往來、文化交融更是將為相關區域旅游發展帶來巨大的發展機遇.為此,旅游企業們積極拓展相關線路;各地旅游主管部門也在大力打造絲路特色旅游品牌和服務.某市旅游局為了解游客的情況,以便制定相應的策略. 在某月中隨機抽取甲、乙兩個景點10天的游客數,統計得到莖葉圖如下:
(1)若將圖中景點甲中的數據作為該景點較長一段時期內的樣本數據,以每天游客人數頻率作為概率.今從這段時期內任取4天,記其中游客數超過130人的天數為,求概率
;
(2)現從上圖20天的數據中任取2天的數據(甲、乙兩景點中各取1天),記其中游客數不低于125且不高于135人的天數為,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側面PAD⊥底面ABCD,E,F分別為PA,BD中點,PA=PD=AD=2.
(Ⅰ)求證:EF∥平面PBC;
(Ⅱ)求二面角E﹣DF﹣A的余弦值;
(Ⅲ)在棱PC上是否存在一點G,使GF⊥平面EDF?若存在,指出點G的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足:a3=6,a5+a7=24,{an}的前n項和為Sn .
(1)求an及Sn;
(2)令bn= (n∈N+),求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于數列有下列命題:
①數列{an}的前n項和為Sn , 且Sn=an﹣1(a∈R),則{an}為等差或等比數列;
②數列{an}為等差數列,且公差不為零,則數列{an}中不會有am=an(m≠n),
③一個等差數列{an}中,若存在ak+1>ak>0(k∈N*),則對于任意自然數n>k,都有an>0;
④一個等比數列{an}中,若存在自然數k,使akak+1<0,則對于任意n∈N* , 都有anan+1<0,
其中正確命題的序號是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com