精英家教網 > 高中數學 > 題目詳情
(2013•梅州一模)若不等式x2+2xy≤a(x2+y2)對于一切正數x,y恒成立,則實數a的最小值為( 。
分析:x2+2xy≤a(x2+y2)?2xy≤(a-1)x2+ay2?(a-1)(
x
y
)
2
-2×
x
y
+a≥0對于一切正數x,y恒成立,依題意,令f(t)=(a-1)t2-2t+a,列不等式組
a-1>0
f(
1
a-1
)≥0
,解之即可得答案.
解答:解:∵x>0,y>0,
∴x2+2xy≤a(x2+y2))?2xy≤(a-1)x2+ay2?(a-1)(
x
y
)
2
-2×
x
y
+a≥0,
令t=
x
y
(t>0),f(t)=(a-1)t2-2t+a,
依題意,
a-1>0
f(
1
a-1
)≥0
a>1
a-
1
a-1
≥0
,解得a≥
5
+1
2

∴實數a的最小值為
5
+1
2

故選D.
點評:本題考查函數恒成立問題,考查轉化與構造函數思想,考查解不等式組的能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•梅州一模)設f(x)與g(x)是定義在同一區間[a,b]上的兩個函數,若函數y=f(x)-g(x)在x∈[a,b]上有兩個不同的零點,則稱f(x)和g(x)在[a,b]上是“關聯函數”,區間[a,b]稱為“關聯區間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關聯函數”,則m的取值范圍為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•梅州一模)設函數f(x)的定義域為D,若存在非零實數l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調函數.如果定義域為R的函數f(x)是奇函數,當x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的8高調函數,那么實數a的取值范圍是
[-
2
,
2
]
[-
2
,
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•梅州一模)設等比數列{an}的公比q=2,前n項和為Sn,則
S4
a2
=
15
2
15
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•梅州一模)已知雙曲線
x2
a2
-
y2
b2
 =1(a>b>0)
的兩條漸近線的夾角為
π
3
,則雙曲線的離心率為
2
3
3
2
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•梅州一模)某工廠在試驗階段大量生產一種零件,這種零件有甲、乙兩項技術指標需要檢測,設各項技術指標達標與否互不影響,按質量檢驗規定:兩項技術指標都達標的零件為合格品,為估計各項技術的達標概率,現從中抽取1000個零件進行檢驗,發現兩項技術指標都達標的有600個,而甲項技術指標不達標的有250個.
(1)求一個零件經過檢測不為合格品的概率及乙項技術指標達標的概率;
(2)任意抽取該零件3個,求至少有一個合格品的概率;
(3)任意抽取該種零件4個,設ξ表示其中合格品的個數,求隨機變量ξ的分布列.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视