【題目】已知某批零件的長度誤差(單位:毫米)服從正態分布N(0,32),從中隨機取一件,其長度誤差落在區間(3,6)內的概率為( )
(附:若隨機變量ξ服從正態分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)
A. 4.56%B. 13.59%C. 27.18%D. 31.74%
科目:高中數學 來源: 題型:
【題目】數列滿足an=2an-1+2n+1(n∈N*,n≥2),
.
(1)求的值;
(2)是否存在一個實數t,使得 (n∈N*),且數列{
}為等差數列?若存在,求出實數t;若不存在,請說明理由;
(3)求數列的前n項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一智能掃地機器人在處發現位于它正西方向的
處和北偏東30°方向上的
處分別有需要清掃的垃圾,紅外線感應測量發現機器人到
的距離比到
的距離少0.4米,于是選擇沿
路線清掃,已知智能掃地機器人的直線行走速度為0.2
,忽略機器人吸入垃圾及在
處旋轉所用時間,10秒鐘完成了清掃任務.
(1)、
兩處垃圾的距離是多少?
(2)智能掃地機器人此次清掃行走路線的夾角的正弦值是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,圓
的普通方程為
. 在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(Ⅰ) 寫出圓 的參數方程和直線
的直角坐標方程;
( Ⅱ ) 設直線 與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
【答案】(1);
.
(2).
【解析】【試題分析】(I)利用圓心和半徑,寫出圓的參數方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設點
,代入向量
,利用三角函數的值域來求得取值范圍.
【試題解析】
(Ⅰ)圓的參數方程為
(
為參數).
直線的直角坐標方程為
.
(Ⅱ)由直線的方程
可得點
,點
.
設點,則
.
.
由(Ⅰ)知,則
.
因為,所以
.
【題型】解答題
【結束】
23
【題目】選修4-5:不等式選講
已知函數,
.
(Ⅰ)若對于任意,
都滿足
,求
的值;
(Ⅱ)若存在,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調查,統計數據如下:
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根據上表說明,能否有的把握認為,收看開幕式與性別有關?
(Ⅱ)現從參與問卷調查且收看了開幕式的學生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.
(ⅰ)問男、女學生各選取多少人?
(ⅱ)若從這8人中隨機選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.
附:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠家具車間造、
型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張
、
型型桌子分別需要1小時和2小時,漆工油漆一張
、
型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張
、
型型桌子分別獲利潤2千元和3千元.
(1)列出滿足生產條件的數學關系式,并畫出可行域;
(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠家具車間造、
型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張
、
型型桌子分別需要1小時和2小時,漆工油漆一張
、
型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張
、
型型桌子分別獲利潤2千元和3千元.
(1)列出滿足生產條件的數學關系式,并畫出可行域;
(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學高考結束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數據b,c;
(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發現它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是偶函數,且滿足
,當
時,
,當
時,
的最大值為
.
(1)求實數的值;
(2)函數,若對任意的
,總存在
,使不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com