已知橢圓的中心在原點,焦點在
軸上,橢圓上的點到焦點的最小距離為
,離心率
.
(1)求橢圓的方程;
(2)若直線交
于
、
兩點,點
,問是否存在
,使
?若存在求出
的值,若不存在,請說明理由.
(1);(2)
解析試題分析:(1)由橢圓上的點到焦點的最小距離為,即
.又離心率
.解出
的值.即可求出
.從而得到橢圓的方程.
(2)直線交
于
、
兩點,點
,若存在
,使
.由直線與橢圓的方程聯立以及韋達定理可得到關于
的等式.再由
向量的垂直同樣可得到關于點
的坐標的關系式.即可得到結論.
(1)設橢圓E的方程為 ,
由已知得
,
,從而
(2分)
橢圓E的方程為
(4分)
(2)由
設 、
, 則
,
,
(6分)
由題意 ,
(8分)
要,就要
, 又
,
,
,
(10分)
或
,又
,
,
故存在 使得
. (12分)
考點:1.待定系數法求橢圓的方程.2.向量的知識.3.解方程的思想.4.運算能力.5.分析解決數學問題的能力.
科目:高中數學 來源: 題型:解答題
如圖,是拋物線為
上的一點,以S為圓心,r為半徑(
)做圓,分別交x軸于A,B兩點,連結并延長SA、SB,分別交拋物線于C、D兩點。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負半軸于點E,若EC : ED =" 1" : 3,求的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知、
為橢圓
的左右焦點,點
為其上一點,且有
.
(1)求橢圓的標準方程;
(2)過的直線
與橢圓
交于
、
兩點,過
與
平行的直線
與橢圓
交于
、
兩點,求四邊形
的面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,短軸端點分別為
.
(1)求橢圓的標準方程;
(2)若,
是橢圓
上關于
軸對稱的兩個不同點,直線
與
軸交于點
,判斷以線段
為直徑的圓是否過點
,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓,過點
且離心率為
.
(1)求橢圓的方程;
(2)已知是橢圓
的左右頂點,動點M滿足
,連接AM交橢圓于點P,在x軸上是否存在異于A、B的定點Q,使得直線BP和直線MQ垂直.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓的中心和拋物線
的頂點均為原點
,
、
的焦點均在
軸上,過
的焦點F作直線
,與
交于A、B兩點,在
、
上各取兩個點,將其坐標記錄于下表中:
(1)求,
的標準方程;
(2)若與
交于C、D兩點,
為
的左焦點,求
的最小值;
(3)點是
上的兩點,且
,求證:
為定值;反之,當
為此定值時,
是否成立?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓c:(a>b>0)的離心率為
,過其右焦點F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設橢圓C的左右頂點分別為A,B,點P是直線x=1上的動點,直線PA與橢圓的另一個交點為M,直線PB與橢圓的另一個交點為N,求證:直線MN經過一定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2013•浙江)如圖,點P(0,﹣1)是橢圓C1:+
=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2于A、B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com